O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.

Alessandra irá comprar um carro novo e está avaliando
sua desvalorização ao longo do tempo. Após uma pesquisa, ela verificou que o valor do modelo que ela pretende comprar diminui 20% ao ano.
Ela pretende vender o carro apenas quando seu valor se
reduzir a 20% do valor de compra.
Adotando log 2 5 0,30, após quantos anos ela deve fazer
isso?


Sagot :

Alessandra irá vender o carro após aproximadamente 7 anos.

Essa questão é sobre funções exponenciais.

Uma função exponencial é aquela em que a variável está no expoente de uma base maior que zero e diferente de 1. Funções exponenciais são escritas na forma y = a·bˣ.

Se o valor do carro diminui em 20% ao ano, seu valor atual deve ser multiplicado por 0,8, então temos que 'a' é o valor inicial do carro e b é igual a 0,8:

y = a·0,8ˣ

Alessandra irá vender o carro quando seu valor for igual a 20% do valor do carro (0,2·a), então:

0,2·a = a·0,8ˣ

0,2 = 0,8ˣ

2/10 = (8/10)ˣ

Aplicando o logaritmo de base 10, temos:

log 2/10 = log₂ (8/10)ˣ

Podemos escrever 8 como 2³:

log 2/10 = log (2³/10)ˣ

Aplicando as propriedades do logaritmo, teremos:

log 2 - log 10 = x·(log 2³ - log 10)

log 2 - log 10 = x·(3·log 2 - log 10)

0,30 - 1 = x·(3·0,30 - 1)

-0,7 = -0,1x

x = 7 anos

Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.