Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.
Sagot :
Resposta:
O quociente, ou razão, citado no texto é [tex]\frac{3}{2}[/tex].
Explicação passo a passo:
Veja que se a esfera está inscrita no cilindro, então a altura [tex]H[/tex] do cilindro tem medida igual ao diâmetro da esfera, ou seja, o dobro do raio [tex]r[/tex] da esfera, então [tex]H = 2r[/tex]. Além disso, veja que o raio da esfera tem a mesma medida do raio [tex]R[/tex] da base do cilindro, ou seja, [tex]R = r[/tex].
O volume do cilindro será dado por [tex]V = \pi.R^2.H[/tex], substituindo [tex]R = r[/tex] e [tex]H = 2r[/tex] teremos que o volume é dado por [tex]V = \pi.r^2.(2r) = 2.\pi.r^3[/tex].
O volume da esfera será dado por [tex]v = \frac{4}{3} \pi.r^3[/tex].
Então a razão entre os volumes do cilindro e da esfera é [tex]\frac{V}{v} = \frac{2\pi.r^3}{\frac{4}{3} \pi r^3} = \frac{2}{\frac{4}{3} } = \frac{2.3}{4} = \frac{3}{2}[/tex]
Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas para outras perguntas que possa ter. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.