Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Encontre respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.

O ponto (-3, k) pertence à circunferência * de equação x2 + y2 + 12x + 4y + 15 = 0.

a) Determine os possíveis valores reais de k.

b) Considere o triângulo cujos vértices são o centro de * e os pontos de abscissa -3 pelos quais passa *. Qual é a área desse triângulo?


O Ponto 3 K Pertence À Circunferência De Equação X2 Y2 12x 4y 15 0 A Determine Os Possíveis Valores Reais De K B Considere O Triângulo Cujos Vértices São O Cent class=

Sagot :

Se o ponto pertence à circunferência, é só substituir o -3 no lugar do x e o k no lugar do y:

(-3)^2+k^2+12 (-3)+4k +15=0

9+k^2-36+4k+15=0

k^2-4k-12=0

delta=(-4)^2-4.1. (-12)

delta=16+48

delta=64

k=-(-4)+/-8 / 2

k=4+/- 8 /2

k'= 4+8/2 = 12/2 = 6

k"=4-8/2 = -4/2 = -2

Os possíveis valores de k são 6 e -2.