Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Conecte-se com profissionais prontos para fornecer respostas precisas para suas perguntas em nossa abrangente plataforma de perguntas e respostas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

Uma empresa realizou uma pesquisa sobre seus produtos com mil pessoas,das quais 60 % são homems.

 

A) Quantos homens não responderam á pesquisa?

 

B) Quantas mulheres preferem o produto B?

 

C) Se uma pessoa é escolhida ao acaso,qual é a probabilidade de que essa pessoa prefira o produto A?

 

D) Qual é a probabilidade de que uma pessoa prefira o produto B?



Uma Empresa Realizou Uma Pesquisa Sobre Seus Produtos Com Mil Pessoasdas Quais 60 São Homems A Quantos Homens Não Responderam Á Pesquisa B Quantas Mulheres Pre class=

Sagot :

1000 x 0,6 = 600 (total de homens)

1000 x 0,4 = 400 (total de mulheres)

 A) Não responderam = total de homens - total que respondeu = 600 - 465 = 135

 B) Preferem o produto B = total de mulheres - (preferem o produto A + não responderam) = 400 - 200 = 200

C) P(prod A) = P(a)/Total = 345/1000 = 69/200

D) P(prod B) = P(b)/Total = 440/1000 = 11/25

(a) 135 homens

(b) 200 mulheres

(c) 34,5%

(d) 44%

O número de homens que não respondeu a pesquisa é equivalente a diferença entre a porcentagem de homens descontada do número de homens que respondeu a preferência pelos produtos A ou B. Logo:

[tex]n=0,60\times 1000-225-240=135[/tex]

Sabendo que existem 600 homens, podemos concluir que existem 400 mulheres. De maneira análoga ao cálculo anterior, vamos determinar esse valor descontando os números da tabela do número total de mulheres. Assim:

[tex]n=400-120-80=200[/tex]

Caso uma pessoa é escolhida ao acaso, a probabilidade de que essa pessoa prefira o produto A é a razão entre o número de homens e mulheres que votaram nesse produto e o número total de pessoas. Portanto:

[tex]P=\frac{225+120}{1000}=0,345=34,5\%[/tex]

Por fim, a probabilidade de que uma pessoa prefira o produto B é calculada da mesma maneira que a probabilidade anterior foi calculada. Portanto:

[tex]P=\frac{240+200}{1000}=0,44=44\%[/tex]

Mais conteúdo em:

https://brainly.com.br/tarefa/18955851

https://brainly.com.br/tarefa/18956553

https://brainly.com.br/tarefa/18972559

View image numero20
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.