O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma.

Calcule, se esxistirem, os seguintes limites, preciso do cálculo urgente, pfvr ajudem

Calcule Se Esxistirem Os Seguintes Limites Preciso Do Cálculo Urgente Pfvr Ajudem class=

Sagot :

Explicação passo a passo:

oie

na a) é só substituir x = 1, pois não há nenhuma indeterminação.

lim x->1 (x³ - 3) = 1³ - 3 = 1-3 = -2

na b) também

[tex]\lim_{x \to 2} \sqrt{x^4-8} = \sqrt{2^4-8} = \sqrt{16-8} = \sqrt{8} = \sqrt{2^3} = 2\sqrt{2}[/tex]

na c) também, só substituir x = 2

já na d) existe uma indeterminação, pois a gente não consegue substituir x = -3. Se fizéssemos isso, teríamos uma divisão por 0, que é uma indeterminação.

então vamos fazer o seguinte:

perceba que x²-9 é um produto notável

x²-9 = (x-3)(x+3)

então:

[tex]\lim_{x \to -3} \frac{x^2-9}{x+3} = \lim_{x \to -3} \frac{(x-3)(x+3)}{(x+3)} = \lim_{x \to -3} \ (x-3) = -3-3 = -6[/tex]

o que aconteceu foi que simplificamos o (x+3) de cima com o (x+3) de baixo, e depois substituímos x = -3, já que a indeterminação foi removida.

na e) também existe uma indeterminação. Para resolver, pegue "x" em evidência na expressão do numerador.

[tex]3x^2-x = x(3x-1)[/tex]

Agora você pode cortar o (3x-1) de cima com o de baixo, e enfim substituir x = 1/3 para encontrar o resultado do limite.

na f) você também tem uma indeterminação, e por isso precisa simplificar a expressão. mas é meio óbvio que precisa aparecer um (x-3) na simplificação né, pois o objetivo é cortar o de cima com o de baixo, para remover a indeterminação.

Então o que vc vai fazer é justamente dividir x³-27 por x-3, fazendo a divisão na chave mesmo. Ao fazer a divisão, você encontra que:

[tex]x^3-27 = (x-3)(x^2+3x+9)[/tex]

e aí ficou fácil né? só cortar o (x-3) de cima com o de baixo e depois substituir x = 3 para obter o resultado final do limite.

sei que não coloquei todos os passos, mas é que ficaria muito longo.

você também pode conferir suas respostas em sites como WolframAlpha e Geogebra!

espero ter ajudado :))