O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Descubra respostas abrangentes para suas perguntas de profissionais experientes em nossa plataforma amigável. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.
Sagot :
Resposta:
O número de formas pelas quais podemos escolher 6 cartas de modo que entre elas haja pelo menos 1 cartas de cada naipe é 1.546.406.784.
Explicação passo a passo:
O baralho comum tem 13 cartas de cada um dos 4 naipes: espadas, paus, copas e ouros.
Seja a figura abaixo um esquema da escolha de 6 cartas:
___ ___ ___ ___ ___ ___
1 2 3 4 5 6
Suponhamos que a ordem das cartas no conjunto de 6 cartas escolhidas não importa.
Para a primeira carta temos 52 possibilidades.
Para a segunda carta, ela tem que ser dos 3 naipes restantes, então são 3*13=39 possibilidades.
Para a terceira carta, ela tem que ser dos 2 naipes restantes, então são 2*13=26 possibilidades.
Para a quarta carta, ela tem que ser do naipe restante, então são 1*13=13 possibilidades.
A quinta carta pode ser escolhida entre qualquer uma das 52-4 = 48 cartas restantes.
A sexta carta pode ser escolhida entre qualquer uma das 48-1 = 47 cartas restantes.
O número total de possibilidades é o produto das possibilidades para cada uma das 6 cartas:
P = 52 * 39 * 26 * 13 * 48 * 47
P = 1.546.406.784
Obrigado por passar por aqui. Estamos comprometidos em fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.