Obtenha as melhores soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.
Sagot :
[tex]\Large\boxed{\begin{array}{l}\rm Quando~o~integrando~\acute e~da~forma\\\sf \sqrt{a^2+x^2}\\\sf use~x=a\,tg(\theta)~de~modo~que~\sqrt{a^2+x^2}=a\,sec(\theta)\\\sf e~dx=a\,sec^2(\theta)\,d\theta\end{array}}[/tex]
[tex]\Large\boxed{\begin{array}{l}\displaystyle\sf\int\dfrac{dx}{\sqrt{4+x^2}}\\\underline{\rm fac_{\!\!,}a}\\\sf x=2\,tg(\theta)\\\sf\sqrt{4+x^2}=2\,sec(\theta)\\\sf dx=2\,sec^2(\theta)\,d\theta\\\displaystyle\sf\int\dfrac{dx}{\sqrt{4+x^2}}=\int\dfrac{\diagup\!\!\!2\,\diagdown\!\!\!\!\!\!sec^2(\theta)}{\diagup\!\!\!2\,\diagdown\!\!\!\!\!sec(\theta)}d\theta\\\displaystyle\sf =\int sec(\theta)d\theta=\ell n|sec(\theta)+tg(\theta)|+k\end{array}}[/tex]
[tex]\Large\boxed{\begin{array}{l}\underline{\rm Usando~o~tri\hat angulo~auxiliar~temos:}\\\sf sec(\theta)=\dfrac{\sqrt{4+x^2}}{2}~tg(\theta)=\dfrac{x}{2}\\\\\displaystyle\sf\int\dfrac{dx}{\sqrt{4+x^2}}=\ell n\bigg|\dfrac{\sqrt{4+x^2}+x}{2}\bigg|+k\end{array}}[/tex]
![View image CyberKirito](https://pt-static.z-dn.net/files/dd5/d62da033cfa7658661fcfd1c06834062.jpg)
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.