O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Obtenha respostas rápidas e confiáveis para suas perguntas de nossa dedicada comunidade de especialistas em nossa plataforma.

A soma de vetores é fundamental para encontrar o carregamento resultante de um corpo. Ao se decompor os mesmos em vetores unitários, cada componente pode ser tratada individualmente e, em caso de equilíbrio, podem ser zeradas uma a uma.


Considerando o conceito de soma vetorial a partir da notação de vetores unitários e o vetor a with rightwards arrow on top equals 2 i with hat on top minus 3 j with hat on top minus 6 k with hat on top space open square brackets N close square brackets, analise as asserções a seguir e a relação proposta entre elas.


I. O módulo do vetor a with rightwards arrow on top vale 7 N.


Porque:


II. É calculado a partir da raiz quadrada da soma dos quadrados de cada componente.


A seguir, assinale a alternativa correta:


Sagot :

Resposta:

I e II estão corretas e II é a justificativa de I

Explicação passo a passo:

Para saber o módulo do vetor unitário usa-se:

[tex]\sqrt{soma do quadrado dos vetores} \\[/tex]

[tex]a= 2i - 3j -6k(N)\\[/tex]

[tex]|a| = \sqrt{2^{2}+(-3)^{2} +(-6)^{2} }[/tex]

[tex]|a|= \sqrt{4+9+36}[/tex]

[tex]|a|=\sqrt{49} =7N[/tex]

Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.