Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas.
Sagot :
O P(t)= 2t² - 16t + 15 é uma parábola. Como seu a é positivo, tem a concavidade voltada para cima.
P(t)= 2t² - 16t + 15
Portanto o t do vértice = -b/2a = -(-16)/2.(2) = 4
Então: para valores de t maiores que 4 (restringindo o domínio) se tem a parte crescente da parábola
Acho que é isso =)
Ola, Daniel.
O polinômio P(t) =2t² - 16t + 15 é uma parábola com a concavidade voltada para cima, uma vez que o termo que acompanha t² é positivo.
Portanto, para t maior que a abscissa do vértice da parábola, P(t) é crescente.
A abscissa do vértice desta parábola é dada por:
[tex]x_{\text{v\'ertice}}=-\frac{b}{2a}=\frac{16}{4} \Rightarrow \boxed{x_{\text{v\'ertice}}=4}[/tex]
Portanto, para [tex]\boxed{t > 4},[/tex] P(t) é crescente.
Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.