O Sistersinspirit.ca facilita a busca por soluções para todas as suas perguntas com a ajuda de uma comunidade ativa. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.

Uma equação de reta, que contém o ponto médio do segmento de extremos (-2; -1) e (5; 4) e que é perpendicular a esse segmento, pode escrever-se:



Sagot :

 

Primeiramente vamos calcular o coeficiente angular do segmento:

Usaremos a fórmula da GA:

 

 

[tex]m_{seg}=\frac{y_{A}-y_{B}}{x_{a}-x{B}}[/tex] 

 

[tex]m_{seg}=\frac{-1-4}{-2-5}\Rightarrow m_{seg}=\frac{5}{7}[/tex] 

 

 

Agora vamos encontrar as coordenadas do ponto médio do segmento.

Usaremos a seguinte fórmula da GA:

 

 

[tex]x_{M}=\frac{x_{A}+x_{B}}{2}[/tex] 

e

[tex]y_{M}=\frac{y_{A}+y_{B}}{2}[/tex] 

 

 

 

Neste caso[tex]x_{M}=\frac{-2+5}{2}=\frac{3}{2}[/tex]

e

[tex]y_{M}=\frac{-1+4}{2}=\frac{3}{2}[/tex]

 

 

sabemos que a condição de perpendicularidade entre uma reta r e um segmento AB é a seguinte[tex]m_{r}=\frac{-1}{m_{seg}}[/tex]:

 

 

Assim  o coeficiente angular da reta procurada é[tex]m_{r}=\frac{-1}{\frac{5}{7}}=\frac{-7}{5}[/tex]:

 

 

Como a reta passa no ponto médio de AB, podemos escrever a equação fundamental:

 

 

[tex]y-y_{M}=m_{r}\cdot(x-x_{M})[/tex] 

Ou seja[tex]y-\frac{3}{2}=-\frac{-7}{5} \cdot (x-\frac{3}{2})[/tex]:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Celio

Olá, Summer.

 

O segmento de reta r que une os pontos (-2;-1) e (5;4) possui coeficiente angular:

 

[tex]m_r=\frac{4-(-1)}{5-(-2)}=\frac57[/tex]

 

A reta s que queremos encontrar é perpendicular ao segmento r. A relação, portanto, entre seus coeficientes angulares é:

 

[tex]m_r\cdot m_s=-1 \Rightarrow \frac57 m_s=-1 \Rightarrow \boxed{m_s=-\frac75}[/tex]

 

Já obtivemos o coeficiente angular da reta procurada. Falta, agora, o coeficiente linear.

 

O coeficiente linear é obtido substituindo-se o ponto médio dos extremos na equação procurada:

 

[tex](-2; -1)\text{ e }(5; 4) \Rightarrow \text{Ponto m\'edio = }(\frac{-2+5}2;\frac{-1+4}2)=(\frac32;\frac32) \\\\ y=m_s \cdot x + p \Rightarrow \frac32=-\frac75 \cdot \frac32+p \Rightarrow \frac32=-\frac{21}{10}+p \Rightarrow p=\frac{15+21}{10} \Rightarrow \\\\ p=\frac{36}{10} \Rightarrow \boxed{p=\frac{18}5}[/tex]

 

A equação da reta procurada é, portanto:

 

[tex]y=m_s\cdot x+p \Rightarrow \boxed{y=-\frac75x+\frac{18}5}[/tex]

Obrigado por confiar em nós com suas perguntas. Estamos aqui para ajudá-lo a encontrar respostas precisas de forma rápida e eficiente. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.