Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Experimente a facilidade de encontrar respostas confiáveis para suas perguntas com a ajuda de uma ampla comunidade de especialistas. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas.

PERGUNTA 1


O Teorema visto na videoaula sobre campos conservativos nos diz que se um campo de forças for um campo gradiente e se o vetor gradiente da função potencial for igual ao campo de forças então o trabalho pode ser calculado por:

integral com gama subscrito F com seta para a direita sobrescrito espaço d r com seta para a direita sobrescrito igual a gama abre parênteses b fecha parênteses menos gama abre parênteses a fecha parênteses onde gama abre parênteses a fecha parênteses espaço e espaço gama abre parênteses b fecha parênteses são os pontos inicial e final respectivamente.


integral com gama subscrito F com seta para a direita sobrescrito espaço d r com seta para a direita sobrescrito igual a fi à potência de apóstrofo abre parênteses gama abre parênteses b fecha parênteses fecha parênteses menos fi à potência de apóstrofo parêntese esquerdo gama abre parênteses a fecha parênteses parêntese direito onde gama abre parênteses a fecha parênteses espaço e espaço gama abre parênteses b fecha parênteses são os pontos inicial e final respectivamente.


integral com gama subscrito F com seta para a direita sobrescrito espaço d r com seta para a direita sobrescrito igual a fi abre parênteses gama abre parênteses a fecha parênteses fecha parênteses menos fi parêntese esquerdo gama abre parênteses b fecha parênteses parêntese direito onde gama abre parênteses a fecha parênteses espaço e espaço gama abre parênteses b fecha parênteses são os pontos inicial e final respectivamente.


integral com gama subscrito espaço F com seta para a direita sobrescrito espaço d r com seta para a direita sobrescrito igual a fi abre parênteses gama abre parênteses b fecha parênteses fecha parênteses menos fi parêntese esquerdo gama abre parênteses a fecha parênteses parêntese direito onde gama abre parênteses a fecha parênteses espaço e espaço gama abre parênteses b fecha parênteses são os pontos inicial e final respectivamente.


integral com gama subscrito espaço F com seta para a direita sobrescrito espaço d r com seta para a direita sobrescrito igual a gama abre parênteses a fecha parênteses menos gama abre parênteses b fecha parênteses onde gama abre parênteses a fecha parênteses espaço e espaço gama abre parênteses b fecha parênteses são os pontos inicial e final respectivamente.


Sagot :

Resposta:

integral com gama subscrito espaço F com seta para a direita sobrescrito espaço d r com seta para a direita sobrescrito igual a fi abre parênteses gama abre parênteses b fecha parênteses fecha parênteses menos fi parêntese esquerdo gama abre parênteses a fecha parênteses parêntese direito onde gama abre parênteses a fecha parênteses espaço e espaço gama abre parênteses b fecha parênteses são os pontos inicial e final respectivamente

Explicação: