O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas.
Sagot :
✅ Ao efetuar a transição do estado [tex] \rm n = 2 [/tex] para o estado [tex] \rm n = 1 [/tex], a energia emitida pelo fóton é de [tex] \rm 10{,}2\, eV [/tex].
[tex] \large \rm B\green{ \bf{\!\!\!\!\!\diagup \!\!\!\backslash } }) \; 10{,}2 \, eV [/tex]
❏ A expressão que relaciona a energia de Rydberg com o número de órbitas do átomo, deduzida por Niels Bohr, nos permite calcular a energia absorvida ou emitida por um elétron num estado transitório.
[tex]\Large \underline{\boxed{\boxed{\rm E_n = -\dfrac{1}{n^2} E_R}}}[/tex]
❏ Essa é a materialização da quantização dos níveis de energia, que por sua vez parte da quantização do raio das órbitas - esses raios são múltiplos do raio de Borh ( [tex] \rm a_b [/tex] ) [tex] \rm r = n^2 \tfrac{\hslash^2}{mke^2}\; | \;a_b \equiv \tfrac{\hslash^2}{mke^2} \therefore r = n a_b [/tex]- que também, por sua vez partiu da quantização do momento angular do elétron, postulado por Bohr como sendo uma entidade que não pode possuir qualquer valor, isto é, uma variável discreta definida como um múltiplo de um valor fundamental, a constante de Max Planck ([tex] \rm \ell = n\tfrac{h}{2\pi}= n \hslash [/tex]), como alternativa para explicar a estabilidade do átomo de hidrogênio, posto que de acordo com o modelo de Rutherford e com a mecânica clássica seria um sistema em colapso, ou seja, não existiria átomo de hidrogênio estável, pois haveria uma força de atração Coulombiana e uma resultante centrípeta levando o elétron a se chocar com o núcleo.
❏ Retomando, note que é de uma variação de energia que estamos falando quando há uma transição entre os níveis de energia
[tex]\Large\underline{\boxed{\boxed{\rm \Delta E = E_n - E_{n}{_{0}}}}}[/tex]
❏ Realizando manipulações algébricas nessa variação, temos:
Obs.: Note que estamos saindo de um nível mais energético para a órbita mais estável, [tex] \rm \therefore \Delta E = E_1 - E_2 [/tex].
[tex]\large\begin{array}{lr}\rm \Delta E = \left [ -\dfrac{1}{n_1^2} E_R\right]- \left[ -\dfrac{1}{n_2^2} E_R\right ]\\\\\rm \Delta E = \left [ -\dfrac{1}{n_1^2} E_R\right] + \left[ \dfrac{1}{n_2^2} E_R\right ]\\\\\rm \Delta E = \left [ \dfrac{1}{n_1^2} E_R\right] - \left[ \dfrac{1}{n_2^2} E_R\right ]\\\\{\underline{\boxed{\rm \therefore\:\Delta E = \left [ \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right ]E_R}}} \end{array}[/tex]
❏ Agora podemos calcular essa quantidade de energia emitida.
[tex]\large\begin{array}{lr}\rm \Delta E = - 13{,}6 \cdot \dfrac{1}{1^2} - \dfrac{1}{2^2} \\\\\rm \Delta E = - 13{,}6 \cdot 1 - \dfrac{1}{4}\\\\\rm \Delta E = - 13{,}6 \cdot \dfrac{3}{4}\\\\\rm \Delta E = - \dfrac{40{,}8}{4}\\\\\red{\underline{\boxed{\rm \therefore\:\Delta E = - 10{,}2\,eV}}}\end{array}[/tex]
❏ Em módulo:
[tex]\Large \underline{\boxed{\boxed{\rm \therefore \: \Delta E = 10{,}2\,eV \: \green{\square \!\!\!\!\checkmark} }}}[/tex]
❏ Essa será a energia emitida pelo fóton na transição da segunda órbita para a primeira.
❏ Seção de links para complementar o estudo sobre física quântica, modelo atômico de Bohr:
- https://brainly.com.br/tarefa/9336736
- https://brainly.com.br/tarefa/10049928
- https://brainly.com.br/tarefa/30495694
[tex]\rule{7cm}{0.01mm}\\\texttt{Bons estudos! :D}\\\rule{7cm}{0.01mm}[/tex]
Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Seu conhecimento é valioso. Volte ao Sistersinspirit.ca para obter mais respostas e informações.