Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções precisas para suas dúvidas de maneira rápida e eficiente.
Sagot :
✅ Ao efetuar a transição do estado [tex] \rm n = 2 [/tex] para o estado [tex] \rm n = 1 [/tex], a energia emitida pelo fóton é de [tex] \rm 10{,}2\, eV [/tex].
[tex] \large \rm B\green{ \bf{\!\!\!\!\!\diagup \!\!\!\backslash } }) \; 10{,}2 \, eV [/tex]
❏ A expressão que relaciona a energia de Rydberg com o número de órbitas do átomo, deduzida por Niels Bohr, nos permite calcular a energia absorvida ou emitida por um elétron num estado transitório.
[tex]\Large \underline{\boxed{\boxed{\rm E_n = -\dfrac{1}{n^2} E_R}}}[/tex]
❏ Essa é a materialização da quantização dos níveis de energia, que por sua vez parte da quantização do raio das órbitas - esses raios são múltiplos do raio de Borh ( [tex] \rm a_b [/tex] ) [tex] \rm r = n^2 \tfrac{\hslash^2}{mke^2}\; | \;a_b \equiv \tfrac{\hslash^2}{mke^2} \therefore r = n a_b [/tex]- que também, por sua vez partiu da quantização do momento angular do elétron, postulado por Bohr como sendo uma entidade que não pode possuir qualquer valor, isto é, uma variável discreta definida como um múltiplo de um valor fundamental, a constante de Max Planck ([tex] \rm \ell = n\tfrac{h}{2\pi}= n \hslash [/tex]), como alternativa para explicar a estabilidade do átomo de hidrogênio, posto que de acordo com o modelo de Rutherford e com a mecânica clássica seria um sistema em colapso, ou seja, não existiria átomo de hidrogênio estável, pois haveria uma força de atração Coulombiana e uma resultante centrípeta levando o elétron a se chocar com o núcleo.
❏ Retomando, note que é de uma variação de energia que estamos falando quando há uma transição entre os níveis de energia
[tex]\Large\underline{\boxed{\boxed{\rm \Delta E = E_n - E_{n}{_{0}}}}}[/tex]
❏ Realizando manipulações algébricas nessa variação, temos:
Obs.: Note que estamos saindo de um nível mais energético para a órbita mais estável, [tex] \rm \therefore \Delta E = E_1 - E_2 [/tex].
[tex]\large\begin{array}{lr}\rm \Delta E = \left [ -\dfrac{1}{n_1^2} E_R\right]- \left[ -\dfrac{1}{n_2^2} E_R\right ]\\\\\rm \Delta E = \left [ -\dfrac{1}{n_1^2} E_R\right] + \left[ \dfrac{1}{n_2^2} E_R\right ]\\\\\rm \Delta E = \left [ \dfrac{1}{n_1^2} E_R\right] - \left[ \dfrac{1}{n_2^2} E_R\right ]\\\\{\underline{\boxed{\rm \therefore\:\Delta E = \left [ \dfrac{1}{n_1^2} - \dfrac{1}{n_2^2} \right ]E_R}}} \end{array}[/tex]
❏ Agora podemos calcular essa quantidade de energia emitida.
[tex]\large\begin{array}{lr}\rm \Delta E = - 13{,}6 \cdot \dfrac{1}{1^2} - \dfrac{1}{2^2} \\\\\rm \Delta E = - 13{,}6 \cdot 1 - \dfrac{1}{4}\\\\\rm \Delta E = - 13{,}6 \cdot \dfrac{3}{4}\\\\\rm \Delta E = - \dfrac{40{,}8}{4}\\\\\red{\underline{\boxed{\rm \therefore\:\Delta E = - 10{,}2\,eV}}}\end{array}[/tex]
❏ Em módulo:
[tex]\Large \underline{\boxed{\boxed{\rm \therefore \: \Delta E = 10{,}2\,eV \: \green{\square \!\!\!\!\checkmark} }}}[/tex]
❏ Essa será a energia emitida pelo fóton na transição da segunda órbita para a primeira.
❏ Seção de links para complementar o estudo sobre física quântica, modelo atômico de Bohr:
- https://brainly.com.br/tarefa/9336736
- https://brainly.com.br/tarefa/10049928
- https://brainly.com.br/tarefa/30495694
[tex]\rule{7cm}{0.01mm}\\\texttt{Bons estudos! :D}\\\rule{7cm}{0.01mm}[/tex]
Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.