Obtenha respostas rápidas e precisas para suas perguntas no Sistersinspirit.ca, a melhor plataforma de Q&A. Explore respostas detalhadas para suas dúvidas de uma comunidade de especialistas em diferentes campos. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Temos as seguintes inequações:
a)
4x - 3 < 2x + 6 --- passando "2x" para o 1º membro e "-3" para o 2º membro da desigualdade, teremos:
4x - 2x < 6 + 3
2x < 9 ---- assim o 1º membro fica sendo 2x (4x-2x=2x) e o 2º membro fica sendo 9 (6+3=9). E assim, isolando "x' para sabermos o conjunto-solução, teremos:
x < 9/2 ----- Este é o conjunto-solução para a questão do item "a".
b)
x/2 + 4 > 3x/4 + 5 ----- mmc, no 1º membro, é igual a 2; e mmc, no 2º membro, é igual a 4. Assim, utilizando cada um dos seus devidos membros, teremos (lembre-se: toma-se o mmc e divide-se pelo denominador; o resultado que der, multiplica-se pelo numerador):
(1*x + 2*4)/2 > (1*3x + 4*5)/4 ---- desenvolvendo, teremos:
(x + 8)/2 > (3x + 20)/4 ----- multiplicando-se em cruz, teremos;
4*(x+8) > 2*(3x+20) ---- efetuando os produtos indicados nos 2 membros, temos:
4x+32 > 6x+40 ---- passando "6x" para o 1º membro e "32" para o 2º membro da desigualdade, iremos ficar assim:
4x - 6x > 40 - 32
- 2x > 8 ----- Assim, o 1º membro fica sendo "-2x" (4x-6x=-2x) e o 2º membro fica sendo "8" (40-32=8). Para saber o conjunto-solução poderíamos multiplicar ambos os membros por (-1),ficando assim (note que quando se multiplica uma inequação por "-1" o seu sentido muda: o que era > passa para < e vice-versa):
2x < -8
x < -8/2
x < -4 ---- Este é o conjunto-solução para a questão do item "b".
c)
x - 8 < 12 - 2x --- passando "-2x" para o 1º membro e "-8" para o 2º membro da desigualdade, iremos ficar assim:
x + 2x < 12 + 8
3x < 20 ----- Assim, o 1º membro será "3x" (x+2x=3x) e o 2º membro será 20 (12+8=20). Para saber qual é o conjunto-solução, então basta isolar "x", ficando:
x < 20/3 ---- Este é o conjunto-solução para a questão do item "c".
d)
2(x-3) > 5(x+2) ---- efetuando os produtos indicados nos 2 membros, temos:
2x-6 > 5x+10 ----- passando "5x" para o 1º membro e "-6" para o 2º, temos:
2x - 5x > 10 + 6
- 3x > 16 ---- o 1º membro fica sendo "-3x" (2x-5x=-3x) e o 2º membro fica sendo "16" (10+6=16). Para encontrarmos o conjunto-solução, multiplicaremos ambos os membros por "-1", com o que iremos ficar da seguinte forma (lembre-se o que ocorre com o sentido de inequações quando se multiplica ambos os membros por "-1"):
3x < - 16 --- isolando "x", teremos:
x < - 16/3 ---- Este é o conjunto-solução para a questão do item "d".
a)
4x - 3 < 2x + 6 --- passando "2x" para o 1º membro e "-3" para o 2º membro da desigualdade, teremos:
4x - 2x < 6 + 3
2x < 9 ---- assim o 1º membro fica sendo 2x (4x-2x=2x) e o 2º membro fica sendo 9 (6+3=9). E assim, isolando "x' para sabermos o conjunto-solução, teremos:
x < 9/2 ----- Este é o conjunto-solução para a questão do item "a".
b)
x/2 + 4 > 3x/4 + 5 ----- mmc, no 1º membro, é igual a 2; e mmc, no 2º membro, é igual a 4. Assim, utilizando cada um dos seus devidos membros, teremos (lembre-se: toma-se o mmc e divide-se pelo denominador; o resultado que der, multiplica-se pelo numerador):
(1*x + 2*4)/2 > (1*3x + 4*5)/4 ---- desenvolvendo, teremos:
(x + 8)/2 > (3x + 20)/4 ----- multiplicando-se em cruz, teremos;
4*(x+8) > 2*(3x+20) ---- efetuando os produtos indicados nos 2 membros, temos:
4x+32 > 6x+40 ---- passando "6x" para o 1º membro e "32" para o 2º membro da desigualdade, iremos ficar assim:
4x - 6x > 40 - 32
- 2x > 8 ----- Assim, o 1º membro fica sendo "-2x" (4x-6x=-2x) e o 2º membro fica sendo "8" (40-32=8). Para saber o conjunto-solução poderíamos multiplicar ambos os membros por (-1),ficando assim (note que quando se multiplica uma inequação por "-1" o seu sentido muda: o que era > passa para < e vice-versa):
2x < -8
x < -8/2
x < -4 ---- Este é o conjunto-solução para a questão do item "b".
c)
x - 8 < 12 - 2x --- passando "-2x" para o 1º membro e "-8" para o 2º membro da desigualdade, iremos ficar assim:
x + 2x < 12 + 8
3x < 20 ----- Assim, o 1º membro será "3x" (x+2x=3x) e o 2º membro será 20 (12+8=20). Para saber qual é o conjunto-solução, então basta isolar "x", ficando:
x < 20/3 ---- Este é o conjunto-solução para a questão do item "c".
d)
2(x-3) > 5(x+2) ---- efetuando os produtos indicados nos 2 membros, temos:
2x-6 > 5x+10 ----- passando "5x" para o 1º membro e "-6" para o 2º, temos:
2x - 5x > 10 + 6
- 3x > 16 ---- o 1º membro fica sendo "-3x" (2x-5x=-3x) e o 2º membro fica sendo "16" (10+6=16). Para encontrarmos o conjunto-solução, multiplicaremos ambos os membros por "-1", com o que iremos ficar da seguinte forma (lembre-se o que ocorre com o sentido de inequações quando se multiplica ambos os membros por "-1"):
3x < - 16 --- isolando "x", teremos:
x < - 16/3 ---- Este é o conjunto-solução para a questão do item "d".
Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.