Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos.

Desenvolva uma argumentação para provas que a fórmula (~A→B)^( ~BvC) ^~C → A é verdadeira.
Valendo 50 pontos. Me ajudem por favor


Sagot :

Zadie

[tex]\Large\boxed{\begin{array}{lll}1.&\sim\!A\rightarrow B&\text{(premissa)}\\2.&\sim\!B\vee C&\text{(premissa)}\\3.&\sim\!C&\text{(premissa)}\\4.&\sim\!B&\text{(2,3 silogismo disjuntivo)}\\5.&\sim\!(\sim\!A)&\text{(1,4 modus tollens)}\\6.&A&\text{(5 dupla $\rm negac_{\!\!,}\tilde{a}o$)}\end{array}}[/tex]

Explicação

Deseja-se demonstrar que a seguinte fórmula é verdadeira:

[tex]\Large\text{$(\sim\!A\rightarrow B)\wedge(\sim\!B\vee C)\wedge\sim\!C\rightarrow A.$}[/tex]

Para tanto, vamos usar o método de validade mediante regras de inferência.

As regras usadas são apresentadas a seguir:

Silogismo disjuntivo (SD)

Essa regra permite deduzir, da disjunção [tex]p\vee q[/tex] e da negação de uma das proposições simples componentes, a outra proposição. Isto é:

[tex]\Large\text{$p\vee q,\,\sim\!p\vdash q$}[/tex]

ou

[tex]\Large\text{$p\vee q,\,\sim\!q\vdash p.$}[/tex]

Modus tollens (MT)

A partir das premissas [tex]p\rightarrow q[/tex] e [tex]\sim\!q[/tex] conclui-se [tex]\sim\!p.[/tex] Simbolicamente, temos:

[tex]\Large\text{$p\rightarrow q,\,\sim\!q\vdash\,\sim\!p.$}[/tex]

Veja outra representação da regra modus tollens na imagem anexa.

Dupla negação (DN)

A negação da negação de uma proposição [tex]p[/tex] equivale a [tex]p.[/tex] Em símbolos, temos:

[tex]\Large\text{$\sim\!(\sim\!p)\iff p.$}[/tex]

Com essas três regras, conseguimos desenvolver a seguinte argumentação para provar a validade da fórmula dada nesta questão:

[tex]\Large\begin{array}{lll}1.&\sim\!A\rightarrow B&\text{(premissa)}\\2.&\sim\!B\vee C&\text{(premissa)}\\3.&\sim\!C&\text{(premissa)}\\4.&\sim\!B&\text{(2,3 SJ)}\\5.&\sim\!(\sim\!A)&\text{(1,4 MT)}\\6.&A&\text{(5 DN)}\end{array}[/tex]

Se houver dúvidas, comente.

Espero ter ajudado!

Para ler sobre as regras modus ponens e modus tollens, acesse: brainly.com.br/tarefa/12045406

View image Zadie
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.