Obtenha respostas rápidas e precisas para suas perguntas no Sistersinspirit.ca, a melhor plataforma de Q&A. Junte-se à nossa plataforma de perguntas e respostas para conectar-se com especialistas dedicados a fornecer respostas precisas para suas perguntas em diversas áreas. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.

A área da seção meridiana de um cilindro equilátero mede 36 centímetros quadrados. Qual o volume desse cilindro, em centímetros cúbicos? *


50 π

54 π

51 π

52 π

Sagot :

Resposta:

resposta: 54π cm³

Explicação passo a passo:

O volume do cilindro pode ser calculado como:

                [tex]V = Ab.h[/tex]

Onde:

              V = Volume

             Ab = Área da base

                h = Altura

Se:

                 [tex]Ab = \pi .r^{2}[/tex]

Então reescrevendo a equação do volume temos:

                 [tex]V = \pi .r^{2} .h[/tex]

Se o cilindro é equilátero, então sua secção meridiana é um quadrado. Neste caso:

                    [tex]h = 2r[/tex]

E a área da secção meridiana é:

                   [tex]As = h^{2}[/tex]

Se a área da secção meridiana "As" é igual a 36 cm², então devemos encontrar o valor da altura h, que é:

      [tex]h = \sqrt{As} = \sqrt{36} = 6 cm[/tex]

Portanto, a altura é h = 6 cm.

Agora, podemos calcular o valor do raio que é:

    [tex]h = 2r => r = \frac{h}{2} = \frac{6}{2} = 3cm[/tex]

Portanto, a medida do raio é r = 3 cm.

Calculando o volume do cilindro temos:

    [tex]V = \pi .r^{2} .h = \pi .3^{2}.6 = \pi .9.6 = 54\pi cm^{3}[/tex]

Portanto, o volume do cilindro equilátero é:

                    [tex]V = 54\pi cm^{3}[/tex]

Aprenda mais sobre volumes, acessando:

https://brainly.com.br/tarefa/47786957

https://brainly.com.br/tarefa/47783694

https://brainly.com.br/tarefa/47912966

https://brainly.com.br/tarefa/47963923

https://brainly.com.br/tarefa/47963713

https://brainly.com.br/tarefa/47786957