Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

Determine a medida do ângulo m no triângulo obtuso a seguir:


Determine A Medida Do Ângulo M No Triângulo Obtuso A Seguir class=

Sagot :

Resposta:

Questão 1) A fórmula de Bhaskara é um método resolutivo para equações do segundo grau utilizado para encontrar raízes a partir dos coeficientes da equação. Uma equação do segundo grau é dada pela seguinte forma:

ax² + bx + c = 0

Bhaskara:

x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}x=

2a

−b±

b

2

−4ac

Os coeficientes dessa equação são os números que ocupam o lugar de “a”, de “b” e de “c”. Portanto, o coeficiente “a” é o número que multiplica x²; o coeficiente “b” é o número que multiplica x; e o coeficiente “c” é o número que não multiplica incógnita.

Então, como são muitas questões, vamos resolver apenas um exemplo e você poderá resolver os outros:

a) x² - 6x + 16 = 0

a = 1

b = -6

c = 16

x=\frac{-b \pm \sqrt{b^{2}-4ac}}{2a}x=

2a

−b±

b

2

−4ac

x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4.1.16}}{2.1}x=

2.1

−(−6)±

(−6)

2

−4.1.16

x=\frac{6 \pm \sqrt{-28}}{2}x=

2

−28

Sabemos que não é possível obter a raiz quadrada de um número negativo sem usar números imaginários, o que nos leva a concluir que não há solução real para esta equação.

Questão 2)

a) ( F ) x'= √5 e x'' = —√5 são soluções da equação x²+ 5 = 0.

a = 1

b = 0

c = 5

x=\frac{0 \pm \sqrt{0^{2}-4.1.5}}{2.1}x=

2.1

0

2

−4.1.5

x=\frac{0 \pm \sqrt{(-20)}}{2}x=

2

(−20)

Sabemos que não é possível obter a raiz quadrada de um número negativo sem usar números imaginários, o que nos leva a concluir que não há solução real para esta equação.

b) ( F ) x ‘ = 5√3 e x ” = —5√3 são soluções da equação x² + 10 = 0.

a = 1

b = 0

c = 10

x=\frac{0 \pm \sqrt{0^{2}-4.1.10}}{2.1}x=

2.1

0

2

−4.1.10

x=\frac{0 \pm \sqrt{(-40)}}{2}x=

2

(−40)

Sabemos que não é possível obter a raiz quadrada de um número negativo sem usar números imaginários, o que nos leva a concluir que não há solução real para esta equação.

c) ( V ) A equação (x + 2)²+ 5 = (3x + 1)² é uma equação quadrática.

d) ( F ) Se o discriminante de uma equação de 2º grau é negativo, a equação tem soluções no conjunto dos números reais.

Um discriminante negativo indica que nenhuma das soluções é composta por números reais.

e) ( V ) O discriminante de uma equação de 2º grau permite decidir se a equação possui ou não soluções no conjunto dos números reais.

O discriminante pode ser positivo, igual a zero, ou negativo, e isso determina quantas soluções há para a equação do segundo grau dada.

Explicação passo-a-passo:

espero que tenha ajudado!

Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.