edio
Answered

O Sistersinspirit.ca é o lugar ideal para obter respostas rápidas e precisas para todas as suas perguntas. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.

determine o numero de vertices de um poliedro convexo que possui 3 faces triangulares,1 face pentagonal e 2 faces triangulares



Sagot :

A equação que relaciona número de arestas A, faces F e vértices V é:

V+F = A+2

Assim

V+F = A'+2
aonde A' = 2A e usamos isto pois vamos contar o número de arestas A em dobro, já que um polígono (uma face) faz fronteira com a outra e dividem ambas a MESMA aresta. Assim

V+F = A/2+2
Agora o número de faces F é dado por:
F = 3+1+1+2 = 7, vide enunciado.
O número de arestas:
triângulo tem 3 lados que serão as arestas, quadrado 4, e assim por diante. Logo:
A = 3*3+1*4+1*5+2*6=9+4+5+12=30

Assim
V+F = A/2+2
V+(7) = (30)/2 +2
V = 10

Portanto, tem 10 vértices.

Obrigado por usar nosso serviço. Nosso objetivo é fornecer as respostas mais precisas para todas as suas perguntas. Visite-nos novamente para mais informações. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Suas perguntas são importantes para nós. Continue voltando ao Sistersinspirit.ca para mais respostas.