O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas.

seja A= | 2    x²| se A tranposta = A, então x é?

              |2x-1 0|

 

 

Alguem podeira me ajudar, explicar urgente como se faz essa matriz?



Sagot :

Considere a matriz [tex]\text{M}=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}[/tex]

 

A matriz transposta de [tex]\text{M}[/tex] será [tex]\text{M}^{\text{T}}=\begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}[/tex], obtida trocando-se as linhas pelas colunas.

 

Conforme o enunciado, temos que:

 

[tex]\text{A}=\text{A}^{\text{T}}[/tex]

 

Ou seja:

 

[tex]\begin{bmatrix} 2 & \text{x}^2 \\ 2\text{x}-1 & 0 \end{bmatrix}=\begin{bmatrix} 2 & 2\text{x}-1 \\ \text{x}^2 & 0 \end{bmatrix}[/tex]

 

Logo, podemos afirmar que:

 

[tex]\text{x}^2=2\text{x}-1[/tex]

 

[tex]\text{x}^2-2\text{x}+1=0[/tex]

 

Donde, obtemos:

 

[tex]\text{x}=\dfrac{-(-2)\pm\sqrt{(-2)^2-4\cdot1\cdot1}}{2\cdot1}=\dfrac{2\pm0}{2}[/tex]

 

[tex]\text{x}=\dfrac{2\pm0}{2}=1[/tex]

O valor de x é 1.

Primeiramente, é importante lembrarmos o que é matriz transposta.

Para determinar a matriz transposta, o que era coluna vira linha e o que era linha vira coluna.

Na matriz [tex]A=\left[\begin{array}{ccc}2&x^2\\2x-1&0\end{array}\right][/tex], temos que a sua transposta é definida por [tex]A^T = \left[\begin{array}{ccc}2&2x-1\\x^2&0\end{array}\right][/tex].

Como essas duas matrizes são iguais, obtemos a igualdade:

[tex]\left[\begin{array}{ccc}2&x^2\\2x-1&0\end{array}\right] = \left[\begin{array}{ccc}2&2x-1\\x^2&0\end{array}\right][/tex].

Igualando os elementos correspondentes, obtemos a seguinte equação do segundo grau:

x² = 2x - 1

x² - 2x + 1 = 0.

Para resolver a equação do segundo grau, podemos utilizar a fórmula de Bhaskara. Dito isso, temos que:

Δ = (-2)² - 4.1.1

Δ = 4 - 4

Δ = 0.

Como Δ = 0, então existe uma solução real para a equação do segundo grau. É ela:

x = 2/2

x = 1.

Portanto, podemos afirmar que o valor de x é 1.

Para mais informações sobre matriz: https://brainly.com.br/tarefa/18335128

View image silvageeh
Obrigado por usar nosso serviço. Nosso objetivo é fornecer as respostas mais precisas para todas as suas perguntas. Visite-nos novamente para mais informações. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.