Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas dúvidas de maneira rápida e precisa. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.

Determine a área, em metros quadrados, do triângulo a seguir, sabendo que ele é retângulo em B .

Determine A Área Em Metros Quadrados Do Triângulo A Seguir Sabendo Que Ele É Retângulo Em B class=

Sagot :

✅ Tendo terminado os cálculos, concluímos que a área do referido triângulo é:

   [tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S_{\triangle} = 8\:m^{2}\:\:\:}}\end{gathered}$}[/tex]

Analisando a figura, concluímos que os vértices do respectivo triângulo são:

             [tex]\Large\begin{cases} A (1, 3)\\B (3, 5)\\C(7, 1)\end{cases}[/tex]

Como temos apenas os vértices do triângulo então podemos aplicar conceitos de geometria analítica para calcular sua área. Para isso, basta calcular a metade do módulo do determinante da matriz "M".

Se a matriz "M" é:

       [tex]\Large\displaystyle\text{$\begin{gathered}M = \begin{bmatrix} 1 & 3 & 1\\3 & 5 & 1\\7 & 1 & 1\end{bmatrix}\end{gathered}$}[/tex]

Então, temos:

       [tex]\Large\displaystyle\text{$\begin{gathered} S_{\triangle} = \frac{|\det M|}{2}\end{gathered}$}[/tex]

                [tex]\Large\displaystyle\text{$\begin{gathered}= \begin{vmatrix}1 & 3 & 1\\3 & 5 & 1\\7 & 1 & 1 \end{vmatrix} / 2\end{gathered}$}[/tex]

                 [tex]\Large\displaystyle\text{$\begin{gathered} = \left|\begin{vmatrix}5 & 1\\1 & 1 \end{vmatrix}\cdot 1 - \begin{vmatrix}3 & 1\\7 & 1 \end{vmatrix}\cdot3 + \begin{vmatrix} 3 & 5\\7 & 1\end{vmatrix}\cdot1\right|/2\end{gathered}$}[/tex]

                  [tex]\Large\displaystyle\text{$\begin{gathered} = \left\|(5 - 1)\cdot1 - (3 - 7)\cdot3 + (3 - 35)\cdot1\right\| / 2\end{gathered}$}[/tex]

                  [tex]\Large\displaystyle\text{$\begin{gathered} = \left\|4\cdot1 - (-4)\cdot3 + (-32)\cdot1\right\| / 2\end{gathered}$}[/tex]

                   [tex]\Large\displaystyle\text{$\begin{gathered} = |4 + 12 - 32| /2\end{gathered}$}[/tex]

                   [tex]\Large\displaystyle\text{$\begin{gathered} = |-16| / 2\end{gathered}$}[/tex]

                   [tex]\Large\displaystyle\text{$\begin{gathered} = 16/2\end{gathered}$}[/tex]

                    [tex]\Large\displaystyle\text{$\begin{gathered} = 8\end{gathered}$}[/tex]

Portanto, a área do triângulo é:

              [tex]\Large\displaystyle\text{$\begin{gathered} S_{\triangle} = 8\:m^{2}\end{gathered}$}[/tex]

[tex]\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}[/tex]

Saiba mais:

  1. https://brainly.com.br/tarefa/49368580
  2. https://brainly.com.br/tarefa/49693403
  3. https://brainly.com.br/tarefa/39857279
  4. https://brainly.com.br/tarefa/51803980
  5. https://brainly.com.br/tarefa/46916311

[tex]\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}[/tex]

View image solkarped

A área do triângulo é 8 m².

  • Observe na imagem anexa que a área (A) do triângulo ABC corresponde à área do trapézio ABDE mais a área do triângulo BCD menos a área do triângulo ACE, cujas medidas são:

Trapézio ABDE: Base maior = 4m, base menor = 2m e altura = 2 m.

Triângulo BCD: Catetos medindo 4 m.

Triângulo ACE: Catetos medindo 2m e 6 m

[tex]\large \text {$ \sf A = \dfrac{(4+2) \cdot 2}{2} + \dfrac{4 \cdot 4}{2} - \dfrac{6 \cdot 2}{2}$}[/tex]

A = 6 + 8 − 6

A = 8 m²

A área do triângulo é 8 m².

Aprenda mais em:

  • brainly.com.br/tarefa/38207158
  • brainly.com.br/tarefa/36043042
  • brainly.com.br/tarefa/33666768
  • brainly.com.br/tarefa/31918282
  • brainly.com.br/tarefa/30353414
View image procentaury
Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Temos orgulho de fornecer respostas no Sistersinspirit.ca. Visite-nos novamente para obter mais informações.