O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Conecte-se com uma comunidade de especialistas prontos para ajudar você a encontrar soluções para suas perguntas de maneira rápida e precisa. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.
Sagot :
✅ Tendo terminado os cálculos, concluímos que a área do referido triângulo é:
[tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf S_{\triangle} = 8\:m^{2}\:\:\:}}\end{gathered}$}[/tex]
Analisando a figura, concluímos que os vértices do respectivo triângulo são:
[tex]\Large\begin{cases} A (1, 3)\\B (3, 5)\\C(7, 1)\end{cases}[/tex]
Como temos apenas os vértices do triângulo então podemos aplicar conceitos de geometria analítica para calcular sua área. Para isso, basta calcular a metade do módulo do determinante da matriz "M".
Se a matriz "M" é:
[tex]\Large\displaystyle\text{$\begin{gathered}M = \begin{bmatrix} 1 & 3 & 1\\3 & 5 & 1\\7 & 1 & 1\end{bmatrix}\end{gathered}$}[/tex]
Então, temos:
[tex]\Large\displaystyle\text{$\begin{gathered} S_{\triangle} = \frac{|\det M|}{2}\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered}= \begin{vmatrix}1 & 3 & 1\\3 & 5 & 1\\7 & 1 & 1 \end{vmatrix} / 2\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \left|\begin{vmatrix}5 & 1\\1 & 1 \end{vmatrix}\cdot 1 - \begin{vmatrix}3 & 1\\7 & 1 \end{vmatrix}\cdot3 + \begin{vmatrix} 3 & 5\\7 & 1\end{vmatrix}\cdot1\right|/2\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \left\|(5 - 1)\cdot1 - (3 - 7)\cdot3 + (3 - 35)\cdot1\right\| / 2\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \left\|4\cdot1 - (-4)\cdot3 + (-32)\cdot1\right\| / 2\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = |4 + 12 - 32| /2\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = |-16| / 2\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = 16/2\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = 8\end{gathered}$}[/tex]
✅ Portanto, a área do triângulo é:
[tex]\Large\displaystyle\text{$\begin{gathered} S_{\triangle} = 8\:m^{2}\end{gathered}$}[/tex]
[tex]\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}[/tex]
Saiba mais:
- https://brainly.com.br/tarefa/49368580
- https://brainly.com.br/tarefa/49693403
- https://brainly.com.br/tarefa/39857279
- https://brainly.com.br/tarefa/51803980
- https://brainly.com.br/tarefa/46916311
[tex]\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}[/tex]
A área do triângulo é 8 m².
- Observe na imagem anexa que a área (A) do triângulo ABC corresponde à área do trapézio ABDE mais a área do triângulo BCD menos a área do triângulo ACE, cujas medidas são:
Trapézio ABDE: Base maior = 4m, base menor = 2m e altura = 2 m.
Triângulo BCD: Catetos medindo 4 m.
Triângulo ACE: Catetos medindo 2m e 6 m
[tex]\large \text {$ \sf A = \dfrac{(4+2) \cdot 2}{2} + \dfrac{4 \cdot 4}{2} - \dfrac{6 \cdot 2}{2}$}[/tex]
A = 6 + 8 − 6
A = 8 m²
A área do triângulo é 8 m².
Aprenda mais em:
- brainly.com.br/tarefa/38207158
- brainly.com.br/tarefa/36043042
- brainly.com.br/tarefa/33666768
- brainly.com.br/tarefa/31918282
- brainly.com.br/tarefa/30353414
Obrigado por escolher nossa plataforma. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.