O Sistersinspirit.ca ajuda você a encontrar respostas confiáveis para todas as suas perguntas com a ajuda de especialistas. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma.
Sagot :
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\mathsf{log_2\:(x^2 - 3x + 2) - log_{\frac{1}{2}}\:(x - 2) = log_2\:6 + log_2\:(x^2 - 5x + 6)}[/tex]
[tex]\mathsf{log_2\:(x^2 - 3x + 2) - \dfrac{log_{2}\:(x - 2)}{log_2\:1/2} = log_2\:6 + log_2\:(x^2 - 5x + 6)}[/tex]
[tex]\mathsf{log_2\:(x^2 - 3x + 2) - \dfrac{log_{2}\:(x - 2)}{log_2\:2^{-1}} = log_2\:6 + log_2\:(x^2 - 5x + 6)}[/tex]
[tex]\mathsf{log_2\:(x^2 - 3x + 2) + log_{2}\:(x - 2) = log_2\:6 + log_2\:(x^2 - 5x + 6)}[/tex]
[tex]\mathsf{log_2\:(x^2 - 3x + 2).(x - 2) = log_2\:6.(x - 2).(x - 3)}[/tex]
[tex]\mathsf{(x^2 - 3x + 2) = 6(x - 3)}[/tex]
[tex]\mathsf{x^2 - 3x + 2 = 6x - 18}[/tex]
[tex]\mathsf{x^2 - 9x + 20 = 0}[/tex]
[tex]\mathsf{\Delta = b^2 - 4.a.c.}[/tex]
[tex]\mathsf{\Delta = (-9)^2 - 4.1.20}[/tex]
[tex]\mathsf{\Delta = 81 - 80}[/tex]
[tex]\mathsf{\Delta = 1}[/tex]
[tex]\mathsf{x = \dfrac{-b \pm \sqrt{\Delta}}{2a} = \dfrac{9 \pm \sqrt{1}}{2} \rightarrow \begin{cases}\mathsf{x' = \dfrac{9 + 1}{2} = \dfrac{10}{2} = 5}\\\\\mathsf{x'' = \dfrac{9 - 1}{2} = \dfrac{8}{2} = 4}\end{cases}}[/tex]
[tex]\boxed{\boxed{\mathsf{S = \{5;4\}}}}\leftarrow\textsf{letra B}[/tex]
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.