Obtenha respostas rápidas e precisas para suas perguntas no Sistersinspirit.ca, a melhor plataforma de Q&A. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.
Sagot :
Para cada lâmpada, há [tex]2[/tex] possibilidades: estar acesa ou apagada.
Desta maneira, existem [tex]2^6-1=64-1=63[/tex] modos de iluminar a sala, excluindo-se a possibilidade em que todas as lâmpadas estão apagadas.
Existem 63 maneiras de iluminar esta sala.
Se pelo menos uma lâmpada deve estar acesa, temos que esta sala pode ser iluminada com 1, 2, 3, 4, 5 ou 6 lâmpadas, ou seja, devemos somar todos os grupos diferentes que podem ser formados com estes números de lâmpadas. Utilizando a combinação simples, temos:
nCx = n!/(n-x)!x!
O total de possibilidades será igual a:
P = 6C1 + 6C2 + 6C3 + 6C4 + 6C5 + 6C6
P = 6!/(6-1)!1! + 6!/(6-2)!2! + 6!/(6-3)!3! + 6!/(6-4)!4! + 6!/(6-5)!5! + 6!/(6-6)!6!
P = 6.5!/5! + 6.5.4!/4!.2.1 + 6.5.4.3!/3!.3.2.1 + 6.5.4!/2.1.4! + 6.5!/5! + 6!/6!
P = 6 + 15 + 20 + 15 + 6 + 1
P = 63
Leia mais em:
https://brainly.com.br/tarefa/9076834
Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Obrigado por confiar no Sistersinspirit.ca. Visite-nos novamente para obter novas respostas dos especialistas.