Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Conecte-se com profissionais em nossa plataforma para receber respostas precisas para suas perguntas de maneira rápida e eficiente. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas.

Me ajudem por favor 4 estou com muita dúvida

Me Ajudem Por Favor 4 Estou Com Muita Dúvida class=

Sagot :

Pronto!!

Me seg no insta: davisantos34
View image davisantos2219

Olá :-)

Lembre-se das seguintes propriedades dos logaritmos:

• Logaritmo de um produto

Em qualquer base, o logaritmo do produto de dois ou mais números positivos é igual à soma dos logaritmos de cada um desses números.

[tex] log_{a}(b \times c) = log_{a}(b) + log_{a}(c) [/tex]

• Logaritmo de um quociente

Em qualquer base, o logaritmo do quociente de dois números reais e positivos é igual à diferença entre os logaritmos desses números.

[tex] log_{a}( \frac{b}{c} ) = log_{a}(b) - log_{a}(c) [/tex]

• Logaritmo de uma potência

Em qualquer base, o logaritmo de uma potência de base real e positiva é igual ao produto do expoente pelo logaritmo da base da potência.

[tex] log_{ {a} }( {b}^{c} ) = c \times log_{a}(b) [/tex]

Solução:

a)

[tex] log(a \times {b}^{2} ) = [/tex]

[tex]log(a \times {b}^{2} ) = log(a) + log( {b}^{2} ) [/tex]

[tex]log(a \times {b}^{2} ) = log(a) + 2 \times log({b}^{} ) [/tex]

b)

[tex] log( \frac{x}{ {y}^{3} } ) = [/tex]

[tex]log( \frac{x}{ {y}^{3} } ) = log(x) - log( {y}^{3} ) [/tex]

[tex]log( \frac{x}{ {y}^{3} } ) = log(x) - 3 \times log( {y} ) [/tex]

c)

[tex] log( \frac{ {x}^{2} \times {y}^{3} } { {z}^{2} } ) = [/tex]

[tex]log( \frac{ {x}^{2} \times {y}^{3} } { {z}^{2} } ) = \frac{ {log(x)}^{2} + log( {y}^{3} ) }{ {z}^{2} } [/tex]

[tex]log( \frac{ {x}^{2} \times {y}^{3} } { {z}^{2} } ) = {log(x)}^{2} + {log( y )}^{3} - { log(z) }^{2} [/tex]

[tex]log( \frac{ { {x}^{2} } \times {y}^{3} } { {z}^{2} } ) = 2 \times {log(x)}+ 3 \times {log( y )} - 2 \times { log(z) }[/tex]

[tex]log( \frac{ { {x}^{2} } \times {y}^{3} } { {z}^{2} } ) = 2 \times ( {log(x)} - log(z)) + 3 \times {log( y )} [/tex]

Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Volte ao Sistersinspirit.ca para obter mais conhecimento e respostas dos nossos especialistas.