Obtenha as melhores soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.

SOCORRO, me ajudem por favor!

Calcule o valor de p = cos1° + cos 2° + cos 3° + . . . + cos 177° + cos 178° + cos 179°.



Sagot :

Celio

Olá, Nibastos.

 

Primeiramente, observemos o seguinte resultado:

 

[tex]\cos(180\º-\theta)=\cos180\º\cos\theta-\underbrace{\sin180\º}_{=0}\sin\theta=-\cos\theta \Rightarrow\\\\ \boxed{\cos\theta+\cos(180\º-\theta)=\cos\theta-\cos\theta=0}\text{ (i)}[/tex]

 

Guarde bem este resultado, pois vamos utilizá-lo daqui a pouco.

 

Agora, vamos reagrupar a soma do enunciado da seguinte forma:

 

[tex]p=\cos1\° + \cos 2\° + \cos 3\° + . . . + \cos 177\° + \cos 178\° + \cos 179\°=\\\\ =(\cos1\° + \cos 179\°) + (\cos 2\° + \cos 178\°) + (\cos 3\° + \cos 177\°) + \\\\ + ... + (\cos89\º+\cos91\º)+\cos90\º[/tex]

 

Vamos utilizar aqui, agora, o resultado que obtivemos em (i):

 

[tex]p=\underbrace{(\cos1\° + \cos 179\°)}_{=0} + \underbrace{(\cos 2\° + \cos 178\°)}_{=0} + \underbrace{(\cos 3\° + \cos 177\°)}_{=0} + \\\\ + ... + \underbrace{(\cos89\º+\cos91\º)}_{=0}+\cos90\º[/tex]

 

Sobra apenas, então:

 

[tex]p=\cos90\º \Rightarrow \boxed{p=0}[/tex]