Alunos
Answered

Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Explore nossa plataforma de perguntas e respostas para encontrar respostas detalhadas de uma ampla gama de especialistas em diversas áreas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.

ENCONTRE O VALOR DE X (COM RESOLUÇÃO TUDO CERTO, DEPOIS QUE ACHAR O VALOR DE X POR FAVOR FAÇA A TROCA DO X PELOS LUGARES QUE CONTEM X PARA VERIFICAR O RESULTADO E DEIXA A CONTA A MOSTRA):

 

[tex]\frac{5x+2}{4x+1}=\frac{3}{4} \\ \\ \frac{3}{x+4}=\frac{4}{5x-2} \\ \\ \frac{2x-1}{3x+2}=\frac{9}{16} \\ \\ \frac{x+5}{3}=\frac{x-1}{5}[/tex]

 

CALCULE OQUE SE PEDE:

[tex](\frac{3}{4})^{3} \\ \\ (\frac{3}{4})^{-3} \\ \\ ((5)^{2})^{3} \\ \\ (3,2)^{5}.(3,2)^{-4} \\ \\ 12^{0} \\ \\ 10^{3}.10^{-5} \\ \\ (\frac{5}{5})^{-3}[/tex]

 

CALCULE

[tex]\\ \\ (4)^{\frac{4}{3}} \\ \\ (9)^{\frac{2}{3}} \\ \\ (12)^{\frac{1}{2}} \\ \\ \sqrt{3}+\sqrt{3} \\ \\ \sqrt{4}+\sqrt{32} \\ \\ \sqrt[3]{27}+\sqrt[3]{81} \\ \\ \sqrt[3]{2}.\sqrt{8} \\ \\ \\ \sqrt[2]{4}.\sqrt[4]{3} \\ \\ \sqrt[3]{7}.\sqrt[2]{2} \\ \\ \sqrt[3]{27}.\sqrt[3]{81} \\ \\ \sqrt[3]{2}.\sqrt{8}\\ \\[/tex]

CALCULE USANDO PRODUTOS NOTAVEIS

[tex](5x+2y)^{2} \\ \\ (3m-n)^{2} \\ \\ (7+m)^{2} \\ \\ (\frac{3}{2}+y)^{2} \\ \\ [/tex]



Sagot :

a)

 

[tex]\dfrac{5\text{x}+2}{4\text{x}+1}=\dfrac{3}{4}[/tex]

 

[tex]3\cdot(4\text{x}+1)=4\cdot(5\text{x}+2)[/tex]

 

[tex]12\text{x}+3=20\text{x}+8[/tex]

 

[tex]8\text{x}=-5[/tex]

 

[tex]\text{x}=-\dfrac{5}{8}[/tex]

 

 

Verificação:

 

[tex]\dfrac{5\cdot\left(-\frac{5}{8}\right)+2}{4\cdot\left(-\frac{5}{8}\right)+1}=\dfrac{3}{4}[/tex]

 

[tex]\dfrac{\frac{-25}{8}+2}{\frac{-20}{8}+1}=\dfrac{3}{4}[/tex]

 

[tex]\dfrac{\frac{-25+16}{8}}{\frac{-20+8}{8}}=\dfrac{3}{4}[/tex]

 

[tex]\dfrac{-9}{-12}=\dfrac{3}{4}[/tex]

 

 

b)

 

[tex]\dfrac{3}{\text{x}+4}=\dfrac{4}{5\text{x}-2}[/tex]

 

[tex]3\cdot(5\text{x}-2)=4\cdot(\text{x}+4)[/tex]

 

[tex]15\text{x}-6=4\text{x}+16[/tex]

 

[tex]11\text{x}=22[/tex]

 

[tex]\text{x}=2[/tex]

 

 

Verificação:

 

[tex]\dfrac{3}{2+4}=\dfrac{4}{5\cdot2-2}[/tex]

 

[tex]\dfrac{3}{6}=\dfrac{4}{8}[/tex]

 

 

c)

 

[tex]\dfrac{2\text{x}-1}{3\text{x}+2}=\dfrac{9}{16}[/tex]

 

[tex]9\cdot(3\text{x}+2)=16\cdot(2\text{x}-1)[/tex]

 

[tex]27\text{x}+18=32\text{x}-16[/tex]

 

[tex]5\text{x}=34[/tex]

 

[tex]\text{x}=\dfrac{34}{5}[/tex]

 

 

Verificação:

 

[tex]\dfrac{2\cdot\left(\frac{34}{5}\right)-1}{3\cdot\left(\frac{34}{5}\right)+2}=\dfac{9}{16}[/tex]

 

[tex]\dfrac{\frac{68}{5}-1}{\frac{102}{5}+2}=\dfrac{9}{16}[/tex]

 

[tex]\dfrac{\frac{68-5}{5}}{\frac{102+10}{5}}=\dfrac{9}{16}[/tex]

 

[tex]\dfrac{63}{112}=\dfrac{9}{16}[/tex]

 

 

d)

 

[tex]\dfrac{\text{x}+5}{3}=\dfrac{\text{x}-1}{5}[/tex]

 

[tex]5\cdot(\text{x}+5)=3\cdot(\text{x}-1)[/tex]

 

[tex]5\text{x}+25=3\text{x}-3[/tex]

 

[tex]2\text{x}=-28[/tex]

 

[tex]\text{x}=\dfrac{-28}{2}=-14[/tex]

 

 

Verificação:

 

[tex]\dfrac{-14+5}{3}=\dfrac{-14-1}{5}[/tex]

 

[tex]\dfrac{-9}{3}=\dfrac{-15}{5}[/tex]

 

 

[tex]\left(\dfrac{3}{4}\right)^3=\dfrac{3^3}{4^3}=\dfrac{27}{64}[/tex]

 

 

[tex]\left(\dfrac{3}{4}\right)^{-3}=\dfrac{4^3}{3^3}=\dfrac{64}{27}[/tex]

 

 

[tex](5^2)^3=5^{2\cdot3}=5^6=5^3\cdot5^3=125\cdot125=15~625[/tex]

 

 

[tex](3,2)^5\cdot(3,2)^4=(3,2)^{5-4}=(3,2)^1=3,2[/tex]

 

 

[tex]12^0}=\text{a}^0=1[/tex], com [tex]\text{a}\ne0[/tex]

 

 

[tex]10^3\cdot10^{-5}=10^{3-5}=10^{-2}=\left(\dfrac{1}{10}\right)^2=\dfrac{1^2}{10^2}=\dfrac{1}{100}[/tex]

 

 

[tex]\left(\dfrac{5}{5}\right)^{-3}=1^{-3}=1^3=1[/tex]

 

 

[tex]\text{a}^{\frac{\text{b}}{\text{c}}=\sqrt[\text{c}]{\text{a}^{\text{b}}}[/tex]

 

 

[tex]4^{\frac{4}{3}}=\sqrt[3]{4^4}=\sqrt[3]{4^3\cdot4}=4\sqrt[3]{4}[/tex]

 

 

 [tex]9^{\frac{2}{3}}=\sqrt[3]{9^2}=\sqrt[3]{81}=3\sqrt[3]{3}[/tex]

 

 

[tex]12^{\frac{1}{2}}=\sqrt[2]{12}=2\sqrt{3}[/tex]

 

 

[tex]\sqrt{3}+\sqrt{3}=2\sqrt{3}=\sqrt{12}[/tex]

 

 

[tex]\sqrt{4}+\sqrt{32}=2+4\sqrt{2}=2\cdot(1+2\sqrt{2}+1)[/tex]

 

 

[tex]\sqrt[3]{27}+\sqrt[3]{81}=3+3\sqrt[3]{3}=3\cdot(1+\sqrt[3]{3}[/tex]

 

 

[tex]\sqrt[3]{2}\cdot\sqrt{8}=\sqrt[6]{2^2}\cdot\sqrt[6]{8^3}=\sqrt[6]{2^2\cdot(2^3)^3}=\sqrt[6]{2^2\cdot2^9}=\sqrt[6]{2^{11}}=2\sqrt[6]{2^5}[/tex]

 

 

[tex]\sqrt4}\cdot\sqrt[4]{3}=\sqrt[4]{4^2}\cdot\sqrt[4]{3}=\sqrt[4]{4^2\cdot3}=\sqrt[4]{48}=\sqrt[4]{2^4\cdot3}=2\sqrt[4]{3}[/tex]

 

 

[tex]\sqrt[3]{7}\cdot\sqrt{2}=\sqrt[6]{7^2}\cdot\sqrt[6]{2^3}=\sqrt[6]{7^2\cdot2^3}=\sqrt[6]{392}[/tex]

 

 

[tex]\sqrt[3]{27}\cdot\sqrt[3]{81}=\sqrt[3]{3^3}\cdot\sqrt[3]{3^3\cdot3}=3\cdot3\sqrt[3]{3}=9\sqrt[3]{3}[/tex]

 

 

[tex](\text{a}+\text{b})^2=\text{a}^2+2\text{a}\text{b}+\text{b}^2[/tex]

 

 

[tex](\text{a}-\text{b})^2=\text{a}^2-2\text{a}\text{b}+\text{b}^2[/tex]

 

 

[tex](\text{a}+\text{b})^2=\text{a}^2+2\text{a}\text{b}+\text{b}^2[/tex]

 


[tex](5\text{x}+2\text{y})^2=(5\text{x})^2+2\cdot5\text{x}\cdot2\text{y}+(2\text{y})^2=25\text{x}^2+20\text{xy}+4\text{y}^2[/tex]

 

 

[tex](3\text{m}-\text{n})^2=(3\text{m})^2-2\cdot3\text{m}\cdot\text{n}+\text{n}^2=9\text{m}^2-6\text{mn}+\text{n}^2[/tex]

 

 

[tex](7+\text{m})^2=7^2+2\cdot7\cdot\text{m}+\text{m}^2=49+14\text{m}+\text{m}^2[/tex]

 

 

[tex](\frac{3}{2}+\text{y})^2=\left(\frac{3}{2}\right)^2+2\cdot\frac{3}{2}\cdot\text{y}+\text{y}^2=\dfrac{9}{4}+3\text{y}+\text{y}^2[/tex]

 

 

Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sistersinspirit.ca está aqui para suas perguntas. Não se esqueça de voltar para obter novas respostas.