O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

Seja a matriz .                                   Sabendo se que

 -1        c         0                                    At = A, calcule o determinante da matriz
  2        1       -1                                      A-A²+I²3 ,  sendo I3 a matriz identidade de
  a        b       -2                                         ordem 3.

 

 

a) –34 b) –67
c) –56 d) –76

 

 



Sagot :

 Condição I: a transposta (obtida trocando linha por coluna) da matriz A é igual a A, ou seja, [tex]A^t = A[/tex].

 

[tex]A^t = A \\\\ \begin{bmatrix} - 1 & 2 & a \\ c & 1 & b \\ 0 & - 1 & - 2 \end{bmatrix} = \begin{bmatrix} - 1 & c & 0 \\ 2 & 1 & - 1 \\ a & b & - 2 \end{bmatrix}[/tex]

 

 Da igualdade acima, podemos concluir que: [tex]\boxed{a = 0}[/tex], [tex]\boxed{b = - 1}[/tex] e [tex]\boxed{c = 2}[/tex]

 

 

 Calculemos agora A²:

 

[tex]\begin{bmatrix} - 1 & 2 & 0 \\ 2 & 1 & - 1 \\ 0 & - 1 & - 2 \end{bmatrix} \times \begin{bmatrix} - 1 & 2 & 0 \\ 2 & 1 & - 1 \\ 0 & - 1 & - 2 \end{bmatrix} = \\\\\\ \begin{bmatrix} (1 + 4 + 0) & (- 2 + 2 + 0) & (0 - 2 + 0) \\ (- 2 + 2 + 0) & (4 + 1 + 1) & (0 - 1 + 2) \\ (0 - 2 + 0) & (0 - 1 + 2) & (0 + 1 + 4) \end{bmatrix} = \\\\\\ \begin{bmatrix} 5 & 0 & - 2 \\ 0 & 6 & 1 \\ - 2 & 1 & 5 \end{bmatrix}[/tex]

 

 

 Calculemos agora [tex](I_3)^2[/tex]:

 

[tex]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}[/tex]

 

 Por fim,

 

[tex]A - A^2 + (I_3)^2 = \\\\ \begin{bmatrix} - 1 & 2 & 0 \\ 2 & 1 & - 1 \\ 0 & - 1 & - 2 \end{bmatrix} - \begin{bmatrix} 5 & 0 & - 2 \\ 0 & 6 & 1 \\ - 2 & 1 & 5 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \\\\\\ \begin{bmatrix} - 5 & 2 & 2 \\ 2 & - 4 & - 2 \\ 2 & - 2 & - 6 \end{bmatrix} = \\\\\\ \begin{bmatrix} - 5 & 2 & 2 & | & - 5 & 2 \\ 2 & - 4 & - 2 & | & 2 & - 4 \\ 2 & - 2 & - 6 & | & 2 & - 2 \end{bmatrix} = \\\\ - 120 - 8 - 8 + 16 + 20 + 24 = \\ \boxed{\boxed{- 76}}[/tex]

 

 

Obrigado por confiar em nós com suas perguntas. Estamos aqui para ajudá-lo a encontrar respostas precisas de forma rápida e eficiente. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.