Answered

Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Descubra soluções detalhadas para suas dúvidas de uma ampla gama de especialistas em nossa plataforma amigável de perguntas e respostas.

1- Aplicando as propriedades com potências de mesma base, reduza cada expressão a uma só potência:
a) (-8)^5 . (-8) . (-8)^4 =

b) [(+2)^6 ] ^2 =

c) (- 13)^20 : (- 13)^14 (- 13^)6 =

d) [(+7)^4 ]^3 =

e) (+10)^5 . (+10) : (+10)^3 =

2- Você já sabe que 9 = 3², 27 = 3³ e 729 = 3^6. Usando as propriedades das potências de mesma base, calcule o valor da expressão (9 x 729) : 27.

3- Aplicando as propriedades da potenciação, calcule o valor das expressões numéricas:

a) (2^9 . 2^11 . 2^3 ) : (2^7)^3 = b) [(0,4)² ] ¹º : [(0,4)^9 . (0,4)^7 . (0,4)]

4- Determine o quociente de 1 024^2 por 64^3 usando a propriedade da potência.



5- Considerando que a x b = 15, calcule o valor de:

a) a² x b² = b) a³ x b³ =


EU PRECISO DE CÁLCULOS!! É PRA HOJE!!!


Sagot :

Resposta:

Explicação passo-a-passo:

[tex]1- a) \left(-8\right)^5\left(-8\right)\left(-8\right)^4=\left(-8\right)^{5+1+4}=\left(-8\right)^{5+1+4}\:5+1+4=10=\left(-8\right)^{10}\left(-8\right)^{10}=8^{10}=8^{10}\\\\b) \left(2^6\right)^2=2^{6\cdot \:2}=2^{6\cdot \:2}\:6\cdot \:2=12=2^{12}2^{12}=4096=4096\\\\c) \frac{(-13)^{6} }{(-13)} (ambos elevados a 6) \left(-13\right)^6 =1[/tex][tex]d) \left(7^4\right)^3=7^{4\cdot \:3}=7^{4\cdot \:3}\:4\cdot \:3=12=7^{12}\\e) \frac{10^5\cdot \:10}{10^3}=10^2\cdot \:10 simplificado: 10^{2} x 10=1000\\[/tex][tex]2- \frac{9x\cdot \:729}{27}\mathrm{Cancele\:os\:numeros:}\:\frac{9}{27}=\frac{1}{3}=\frac{x\cdot \:729}{3}\mathrm{Dividir:}\:\frac{729}{3}=243=x\cdot \:243[/tex][tex]3- a) \frac{\left(2^9\cdot \:2^1\cdot \:12^3\right)}{\left(2^7\right)^3}=\frac{b\left(0.4\right)^2}{\left(\left(0.4\right)^9\left(0.4\right)^7\left(0.4\right)\right)} \mathrm{Trocar\:lados}\frac{b\left(0.4\right)^2}{\left(\left(0.4\right)^9\left(0.4\right)^7\left(0.4\right)\right)}=\frac{\left(2^9\cdot \:2^1\cdot \:12^3\right)}{\left(2^7\right)^3} simplificar:\frac{b\left(0.4\right)^2}{\left(\left(0.4\right)^9\left(0.4\right)^7\left(0.4\right)\right)}=\frac{27}{32}[/tex][tex]\mathrm{Multiplicar\:ambos\:os\:lados\:por\:}1.71799.... e -7 \frac{1.71799\dots E-7b\cdot \:0.4^2}{0.4^9\cdot \:0.4^7\cdot \:0.4}=\frac{27\cdot \:1.71799\dots E-7}{32}\\ simplificar: 0.16b=1.44955\dots E-7\mathrm{Dividir\:ambos\:os\:lados\:por\:}0.16\\[/tex][tex]\frac{0.16b}{0.16}=\frac{1.44955\dots E-7}{0.16}\mathrm{Simplificar}b=9.0597\dots E-7[/tex][tex]4- \frac{\left(1024\right)^2}{\left(64\right)^3}=\frac{\left(2^{10}\right)^2}{\left(2^6\right)^3}=\frac{2^{20}}{2^{18}}=2^{2=4}[/tex]

4- [tex]\frac{\left(1024\right)^2}{\left(64\right)^3}=\frac{\left(2^{10}\right)^2}{\left(2^6\right)^3}=\frac{2^{20}}{2^{18}}=2^{2}=4[/tex][tex]5- a) a^2xb^2=ba^3xb^3\mathrm{Subtrair\:}a^3b^4x\mathrm{\:de\:ambos\:os\:lados}a^2xb^2-a^3b^4x=a^3b^4x-a^3b^4xSimplificara^2xb^2-a^3b^4x=0\\a^2b^2x\left(1-ab^2\right)=0\mathrm{Usando\:o\:princípio\:do\:fator\:zero:\quad \:Se}\:ab=0\:\mathrm{então}\:a=0\:\mathrm{ou}\:b=0x=0[/tex]

5-[tex]a^2xb^2=ba^3xb^3\mathrm{Subtrair\:}a^3b^4x\mathrm{\:de\:ambos\:os\:lados}a^2xb^2-a^3b^4x=a^3b^4x-a^3b^4x\mathrm{Simplificar}a^2xb^2-a^3b^4x=0\\a^2b^2x\left(1-ab^2\right)=0\mathrm{Usando\:o\:princípio\:do\:fator\:zero:\quad \:Se}\:ab=0\:\mathrm{então}\:a=0\:\mathrm{ou}\:b=0x=0[/tex]