Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

24. Uma das formas mais elementares da geometria frac-
tal é o triângulo do matemático polonês Waclaw Sier-
pinski (1882-1969), representado a seguir.
Ilustrações: MRS Editorial
Unindo os pontos médios do triângulo equilátero ini-
cial, obtemos quatro triângulos menores. Esse proce-
dimento é repetido infinitas vezes até que o triângulo
inicial praticamente desapareça. Se o lado do triângu-
lo inicial mede x, qual será a medida do lado do triân-
gulo destacado de amarelo, na terceira figura?​


24 Uma Das Formas Mais Elementares Da Geometria Fractal É O Triângulo Do Matemático Polonês Waclaw Sierpinski 18821969 Representado A SeguirIlustrações MRS Edit class=

Sagot :

A quantidade de triângulos na fase 10 é de 19683.

O número de triângulos a cada fase é dado pela expressão 3ⁿ⁻¹ onde n é o número da fase, por isso, nas fases 1, 2, e 3 temos que o número de triângulos é 3⁰, 3¹ e 3², respectivamente.

Estendendo esses cálculos até a fase 10, temos apenas que ir multiplicando o valor anterior por 3 até chegar na fase 10:

Fase   Número de Triângulos

 1            1         3⁰

 2           3        3¹

 3           9        3²

 4           27      3³

 5           81       3⁴

 6          243     3⁵

 7          729     3⁶

 8         2187     3⁷

 9         6561     3⁸

10        19683    3⁹