O Sistersinspirit.ca é a melhor solução para quem busca respostas rápidas e precisas para suas perguntas. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.

verifique se os seguintes conjuntos são espaços vetoriais

Verifique Se Os Seguintes Conjuntos São Espaços Vetoriais class=

Sagot :

Resposta:

a)

∫ dx/√(x²+9/25)

Substituindo

x= 3tan(u)/5  ==>dx=3sec²(u)/5 du

∫ 3sec²(u)/5 du/√([(3tan(u)/5)²+9/25]

∫ 3sec²(u)/5 du/√[9tan²(u)/25+9/25]

∫ 3sec²(u)/5 du/√[9sen²(u)/25+9cos²(u)]/25cos²(u)]

∫ 3sec²(u)/5 du/√[9/25cos²(u)]

∫ 3sec²(u)/5 du/[3*sec(u)/5]

∫ sec(u) du

∫ sec(u) * ( tan(u)+sec(u))/( tan(u)+sec(u)) du

Faça s=(tan(u)+sec(u)  ==> ds =[sec²(u) +tan(u)*sec(u)] du

∫ sec(u) * ( tan(u)+sec(u))/s    ds/[sec²(u) +tan(u)*sec(u)]

∫( tan(u)*sec(u)+sec²(u))/s    ds/[sec²(u) +tan(u)*sec(u)]

∫1 /s    ds

= ln |s|+ c

Como s= (tan(u)+sec(u)

= ln |(tan(u)+sec(u)|+ c

Como x= 3tan(u)/5 ==> tan(u) =5x/3 ==> u = arctan(5x/3)

= ln | (tan( arctan(5x/3)  )+sec( arctan(5x/3) ) |+ c

b)

Pode ser feita da mesma maneira

Explicação passo-a-passo:

Explicação passo a passo: