Resolvendo o sistema de equações logarítmicas encontramos que a = 3⁴ e b = 1/3⁴, assim o produto P = a · b é igual a 1.
⠀
Desejamos encontrar as incógnitas ‘‘a’’ e ’‘b’’ do seguinte sistema de equações para assim determinarmos o produto P = a · b
[tex]\\\Large\boldsymbol{\begin{array}{l}\begin{cases}3\ell og\:\!_3\,(a)+\ell og\:\!_9\,(b)=10~~~\mathnormal{(\,I\,)}\\\\\ell og\:\!_9\,(a)-2\ell og\:\!_3\,(b)=10~~\mathnormal{(\,II\,)}\end{cases}\end{array}}\\\\[/tex]
, como são equações logarítmicas vamos usar algumas propriedades dos logaritmos, deixarei listadas as que vamos usar aqui no início:
[tex]\\\begin{array}{l}1^\circ)~~\ell og\:\!_a\,(b^c)~\Leftrightarrow~c\cdot\ell og\:\!_a\,(b)\\\\2^\circ)~~\ell og\:\!_{a^{c}}\,(b)~\Leftrightarrow~\dfrac{1}{c}\cdot\ell og\:\!_a\,(b)\\\\3^\circ)~~\ell og\:\!_a\,(b)+\ell og\:\!_a\,(c)~\Leftrightarrow~\ell og\:\!_a\,(b\cdot c)\\\\4^\circ)~~\ell og\:\!_a\,(b)-\ell og\:\!_a\,(c)~\Leftrightarrow~\ell og\:\!_a\,\bigg(\dfrac{b}{c}\bigg)\end{array}\\\\[/tex]
Dessa forma, vamos prosseguir.
⠀
Inicialmente, pensamos em deixar as bases dos logaritmos iguais em cada eq. para que possamos efetuar as propriedade 3° e 4°. Então,
⠀
na eq. ( ɪ ):
[tex]\large\begin{array}{l}3\ell og\:\!_3\,(a)+\ell og\:\!_9\,(b)=10\\\\3\ell og\:\!_3\,(a)+\ell og\:\!_{3^2}\,(b)=10\\\\3\ell og\:\!_3\,(a)+\dfrac{1}{2}\cdot\ell og\:\!_3\,(b)=10\\\\2\cdot3\ell og\:\!_3\,(a)+\ell og\:\!_3\,(b)=2\cdot10\\\\6\ell og\:\!_3\,(a)+\ell og\:\!_3\,(b)=20\\\\\ell og\:\!_3\,(a^6)+\ell og\:\!_3\,(b)=20\\\\\ell og\:\!_3\,(a^6\cdot b)=20~~~\mathnormal{(\,III\,)}\end{array}\\\\[/tex]
⠀
; na eq. ( ɪɪ ):
[tex]\large\begin{array}{l}\ell og\:\!_9\,(a)-2\ell og\:\!_3\,(b)=10\\\\\ell og\:\!_{3^2}\,(a)-2\ell og\:\!_3\,(b)=10\\\\\dfrac{1}{2}\cdot\ell og\:\!_3\,(a)-2\ell og\:\!_3\,(b)=10\\\\\ell og\:\!_3\,(a)+2\cdot[-2\ell og\:\!_3\,(b)]=2\cdot10\\\\\ell og\:\!_3\,(a)-4\ell og\:\!_3\,(b)=20\\\\\ell og\:\!_3\,(a)-\ell og\:\!_3\,(b^4)=20\\\\\ell og\:\!_3\,\bigg(\dfrac{a}{b^4} \bigg)=20~~~\mathnormal{(\,IV\,)}\end{array}\\\\[/tex]
Agora vamos formar um novo sistema com as equações ( ɪɪɪ ) e ( ɪᴠ ):
[tex]\\\Large\begin{array}{l}\begin{cases}\ell og\:\!_3\,(a^6\cdot b)=20~~~\mathnormal{(\,III\,)}\\\\\ell og\:\!_3\,\bigg(\dfrac{a}{b^4}\bigg)=20~~~\mathnormal{(\,IV\,)}\end{cases}\end{array}\\\\[/tex]
Veja que, pela definição de logaritmo temos que [tex]\ell og\:\!_a\,(b)=c~\Leftrightarrow~b=a^c[/tex], assim:
[tex]\\\large\begin{array}{l}\implies~~\begin{cases}\ell og\:\!_3\,(a^6\cdot b)=20\\\\\ell og\:\!_3\,\bigg(\dfrac{a}{b^4}\bigg)=20\end{cases}\\\\\iff~~\begin{cases}a^6\cdot b=3^{20}\\\\\dfrac{a}{b^4}=3^{20}\end{cases}\end{array}\\\\[/tex]
Agora, usando o método da substituição, a fim de encontrar ‘‘b’’ podemos isolar ‘‘a’’ na segunda eq.:
[tex]\\\large\begin{array}{l}\implies~~~\dfrac{a}{b^4}=3^{20}\\\\\iff~~~a=b^4\cdot3^{20}\end{array}\\\\[/tex]
E assim podemos substituí-lo na primeira eq.:
[tex]\\\large\begin{array}{l}\implies~~~a^6\cdot b=3^{20}\\\\\iff~~~\big(b^4\cdot3^{20}\big)^6\cdot b=3^{20}\\\\\iff~~~(b^{24}\cdot3^{120})\cdot b=3^{20}\\\\\iff~~~b^{24+1}\cdot3^{120}=3^{20}\\\\\iff~~~b^{25}=\dfrac{3^{20}}{3^{120}}\\\\\iff~~~b^{25}=3^{20-120}\\\\\iff~~~b^{25}=3^{-100}\\\\\iff~~~b^{25}=\dfrac{1}{3^{100}}\\\\\iff~~~b=\sqrt[25]{\dfrac{1}{3^{100}}}\\\\\iff~~~b=\dfrac{\sqrt[25]{1}}{\sqrt[25]{3^{100}}}\\\\\iff~~~b=\dfrac{1}{\sqrt[25:25]{3^{100:25}}}\\\\\iff~~\boldsymbol{\boxed{b=\dfrac{1}{3^4}}}\end{array}\\\\[/tex]
Agora para encontrar ‘‘a’’, vamos substituir ‘‘b’’ na eq. em que a isolamos:
[tex]\\\large\begin{array}{l}\implies~~~a=b^4\cdot3^{20}\\\\\iff~~~a=\bigg(\dfrac{1}{3^4}\bigg)\!^4\cdot3^{20}\\\\\iff~~~a=(3^{-4})^4\cdot3^{20}\\\\\iff~~~a=3^{-16}\cdot3^{20}\\\\\iff~~~a=3^{-16\:+\:20}\\\\\iff~~\boldsymbol{\boxed{a=3^{4}}}\end{array}\\\\[/tex]
Dessa forma, se a = 3⁴ e b = 1/3⁴, então o produto P = a · b é:
[tex]\\\Large\begin{array}{l}P=a\cdot b\\\\P=3^4\cdot\dfrac{1}{3^4}\\\\P=\diagdown\!\!\!\!3^4\cdot\dfrac{1}{\diagdown\!\!\!\!3^4}\\\\\!\!\boldsymbol{\boxed{\boxed{P=1}}}\end{array}[/tex]
⠀
[tex]\!\!\!\!\Large\begin{array}{l}\beta\gamma~N\alpha sg\theta v\alpha sk\theta v\\\Huge\text{\sf ---------------------------------------------}\end{array}[/tex]
Veja mais sobre:
brainly.com.br/tarefa/38073448
brainly.com.br/tarefa/38016884
brainly.com.br/tarefa/38057636