Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Explore milhares de perguntas e respostas de uma comunidade de especialistas dispostos a ajudar você a encontrar soluções. Obtenha soluções rápidas e confiáveis para suas perguntas de profissionais experientes em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Resposta:-142
Explicação passo-a-passo:
As expressões algébricas são aquelas expressões matemáticas que possuem números e letras, também conhecidas como variáveis. Utilizamos as letras para representar valores desconhecidos ou até mesmo para analisar o comportamento da expressão de acordo com o valor dessa variável.
As expressões algébricas são bastante comuns no estudo das equações e na escrita de fórmulas da Matemática e áreas afins.
Caso a expressão algébrica possua um único termo algébrico, ela é conhecida como monômio; quando possui mais de um, é chamada de polinômio. É possível também calcular operações algébricas, que são as operações entre expressões algébricas.
O que é uma expressão algébrica?
Definimos como expressão algébrica uma expressão que contém letras e números, separados por operações básicas da Matemática, como a adição e a multiplicação. As expressões algébricas são de grande importância para o estudo mais avançado da Matemática, tornando possível o cálculo de valores desconhecidos nas equações ou até mesmo o estudo de funções. Vejamos alguns exemplos de expressões algébricas:
a) 2x²b + 4ay² + 2
b) 5m³n8
c) x² +2x - 3
As expressões algébricas recebem nomes particulares dependendo da quantidade de termos algébricos que possuem.
Monômios
Uma expressão algébrica é conhecida como monômio quando ela possui somente um termo algébrico. Um termo algébrico é aquele que possui letras e números separados apenas por uma multiplicação entre eles.
Um monômio é dividido em duas partes: o coeficiente, que é o número que está multiplicando a letra, e a parte literal, que é a variável com o seu expoente.
Exemplos:
a) 2x³ → coeficiente é igual a 2 e a parte literal é igual a x³.
b) 4ab → coeficiente é igual a 4 e a parte literal é igual a ab.
c) m²n → coeficiente é igual a 1 e a parte literal é igual a m²n.
Quando as partes literais de dois monômios são iguais, eles são conhecidos como monômios semelhantes.
Exemplos:
a) 2x³ e 4x³ são semelhantes.
b) 3ab² e -7ab² são semelhantes.
c) 2mn e 3mn² não são semelhantes.
d) 5y e 5x não são semelhantes.
Polinômios
Quando a expressão algébrica possui muitos termos algébricos, ela é conhecida como polinômio. Um polinômio nada mais é do que a soma ou a diferença entre monômios. É bastante comum o uso de polinômios no estudo de equações e funções, ou na geometria analítica, para descrever as equações de elementos da geometria.
Exemplos:
a) 2x² + 2x + 3
b) 2ab – 4ab² + 2a - 4b + 1
c) 5mn - 3
d) 4y² + x³ – 4x + 8
Simplificação de expressões algébricas
Em uma expressão algébrica, quando há termos semelhantes, é possível realizar a simplificação dessa expressão por meio de operações com os coeficientes dos termos semelhantes.
Exemplo:
5xy² + 10x – 3xy + 4x²y – 2x²y² + 5x – 3xy + 9xy² – 4x²y + y
Para simplificar, vamos identificar os termos semelhantes, ou seja, termos que possuem mesma parte literal.
5xy² + 10x – 3xy + 4x²y – 2x²y² + 5x – 3xy + 9xy² – 5x²y
Realizaremos as operações entre os termos semelhantes, então:
5xy² + 9xy² = 14xy²
10x + 5x = 15x
-3xy – 3xy = -6xy
4x²y -5x²y = -1x²y= -x²y
O termo -2x²y² não possui nenhum termo semelhante a ele, logo a expressão algébrica simplificada será:
-2x²y² + 14xy² + 15x – 6xy -x²y
Operações algébricas
Realizar adição ou subtração de expressões algébricas nada mais é do que simplificar a expressão, portanto só é possível operar com os termos algébricos que são semelhantes. Já na multiplicação, é necessário utilizar a propriedade distributiva entre os termos, conforme os exemplos a seguir:
Exemplo de adição:
(2x² + 3xy – 5) + (3x² – xy + 2)
Como é uma adição, podemos simplesmente remover os parênteses, sem alterar nenhum dos termos:
2x² + 3xy – 5 + 3x² – xy + 2
Agora vamos simplificar a expressão:
5x² +2xy – 3
Exemplo de subtração:
(2x² + 3xy – 5) – (3x² – xy + 2)
Para remover os parênteses, é necessário inverter o sinal de cada termo algébrico da segunda expressão:
2x² + 3xy – 5 –3x² + xy – 2
Agora vamos simplificar a expressão:
– x² + 4xy – 7
Exemplo de multiplicação:
(2x² + 3xy – 5) ( 3x² – xy + 2)
Aplicando a propriedade distributiva, encontraremos:
6x4 – 2x³y + 4x² + 9x³y – 3x²y² +6xy – 15x² – 5xy + 10
Agora vamos simplificar a expressão:
6x4 + 7x³y – 11x² –3x²y² + xy + 10
se puder marque minha resposta como a melhor obrigado, bons estudos :3
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Obrigado por confiar no Sistersinspirit.ca. Volte novamente para obter mais informações e respostas.