O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Faça suas perguntas e receba respostas detalhadas de profissionais com ampla experiência em diversos campos. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas.
Sagot :
Para reaver essa questão, vamos usar a definição formal de limites, dada por:
- Seja f uma função e "a" um ponto contido no domínio de f. Dizemos que f tem limite L, no ponto a, se dado qualquer [tex]\epsilon >0 [/tex], exista um [tex]\delta>0 [/tex] tal que, para qualquer x pertencente ao domínio de f, a condição abaixo seja satisfeita:
[tex]\lim_{x\to a}f(x) = L \\ \: 0 < |x - a| < \delta \: \: \: e \: \: \: |f(x) - L | < \epsilon\\ [/tex]
Vamos iniciar definindo cada temos do limite fornecido. Fazendo isso temos que:
[tex]\lim_{x\to 1} \frac{2 + 4x}{3} = 2 \\ L = 2 , \: f(x) = \frac{2 + 4x}{3} , \: a = 1[/tex]
Agora vamos substituir nas relações:
[tex]0 < |x - 1| < \delta \: \: e \: \: \left | \frac{2 + 4x}{3} - 2\right| < \epsilon \\ \\ 0 < |x - 1| < \delta \: \: e \: \: \left | \frac{2 + 4x - 6}{3} \right| < \epsilon \\ \\ 0 < |x - 1| < \delta \: \: e \: \: \left | \frac{1}{3} \right| \: . \: |4x - 4| < \epsilon \\ \\ 0 < |x - 1| < \delta \: \: e \: \: |4| . |x - 1| < 3 \epsilon \: \: \: \: \: \\ \\ 0 < |x - 1| < \delta \: \: e \: \: |x - 1| < \frac{3 \epsilon}{4} \: \: \: \: \: \: \: \: \: \: [/tex]
Observe que em ambos as expressões, temos os mesmo termos, isso quer dizer que:
[tex] \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \boxed{\delta = \frac{3 \epsilon}{4} } \\ [/tex]
Espero ter ajudado
Agradecemos seu tempo em nosso site. Não hesite em retornar sempre que tiver mais perguntas ou precisar de esclarecimentos adicionais. Esperamos que nossas respostas tenham sido úteis. Volte a qualquer momento para obter mais informações e respostas a outras perguntas que tenha. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.