Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais. Conecte-se com profissionais prontos para fornecer respostas precisas para suas perguntas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Oi Daiane.
O exercício afirma que essa função terá valor máximo, portanto o a<0.
Sabendo isso vamos aos cálculos.
[tex]f(x)=ax^2-4x+a\\ \\ \Delta =b^2-4ac\\ \Delta =(-4)^2-4*a*a\\ 16-4a^2=0\\ 16=4a^2\\ \frac { 16 }{ 4 } =a^2\\ \\ 4=a^2\\ \sqrt { 4 } =a\\ 2\pm =a\\ \\ \\ f(x)=-2x^2-4x-2\\ f(-3)=(-2)(-3)^2-4(-3)-2\\ f(-3)=(-2)*9+12-2\\ f(-3)=-18+12-2\\ f(-3)=-8[/tex]
R:D
O exercício afirma que essa função terá valor máximo, portanto o a<0.
Sabendo isso vamos aos cálculos.
[tex]f(x)=ax^2-4x+a\\ \\ \Delta =b^2-4ac\\ \Delta =(-4)^2-4*a*a\\ 16-4a^2=0\\ 16=4a^2\\ \frac { 16 }{ 4 } =a^2\\ \\ 4=a^2\\ \sqrt { 4 } =a\\ 2\pm =a\\ \\ \\ f(x)=-2x^2-4x-2\\ f(-3)=(-2)(-3)^2-4(-3)-2\\ f(-3)=(-2)*9+12-2\\ f(-3)=-18+12-2\\ f(-3)=-8[/tex]
R:D
Olá, Daiane.
Como a função admite duas raízes reais iguais, então temos que:
[tex]\Delta = 0\Rightarrow (-4)^2-4a\cdot a=0\Rightarrow 16-4a^2=0\Rightarrow\\\\16=4a^2\Rightarrow a^2=4\Rightarrow a=\pm2[/tex]
Se a função admite um máximo, então sua concavidade está voltada para baixo, ou seja, temos que [tex]a<0,[/tex] ou seja, [tex]a=-2.[/tex]
A função é dada, portanto, por: [tex]f(x)=-2x^2-4x-2=-2(x^2+2x+1)=-2(x+1)^2[/tex]
Portanto: [tex]f(-3)=-2(-3+1)^2=-2(-2)^2=-2\cdot4=\boxed{-8}[/tex]
Resposta: letra "d"
Como a função admite duas raízes reais iguais, então temos que:
[tex]\Delta = 0\Rightarrow (-4)^2-4a\cdot a=0\Rightarrow 16-4a^2=0\Rightarrow\\\\16=4a^2\Rightarrow a^2=4\Rightarrow a=\pm2[/tex]
Se a função admite um máximo, então sua concavidade está voltada para baixo, ou seja, temos que [tex]a<0,[/tex] ou seja, [tex]a=-2.[/tex]
A função é dada, portanto, por: [tex]f(x)=-2x^2-4x-2=-2(x^2+2x+1)=-2(x+1)^2[/tex]
Portanto: [tex]f(-3)=-2(-3+1)^2=-2(-2)^2=-2\cdot4=\boxed{-8}[/tex]
Resposta: letra "d"
Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.