Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas confiáveis e rápidas com a ajuda de nossos especialistas. Experimente a conveniência de obter respostas confiáveis para suas perguntas de uma vasta rede de especialistas. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.

Calcule a medida do ângulo entre os vetores v e w sabendo-se que: a medida do ângulo entre u e v é π/8rad, ||u|| = ||w|| = 5, ||v|| = 1, ||u − v + w|| = ||u + v + w||.

Sagot :

Seja k = u + w. Pelo enunciado, (k + v) e (k - v) possuem a mesma magnitude. Isso só pode acontecer se k e v forem perpendiculares: se α é o ângulo entre k e v, então (π - α) é o ângulo entre k e -v, e ao igualar as magnitudes de ambos os vetores teremos cos(α) = cos(π - α), que implica α = π/2 para α entre 0 e π (use a fórmula da magnitude da soma de dois vetores e verifique!). Logo, o produto escalar entre v e u + w

Tenha em mente a propriedade distributiva do produto escalar sobre adição vetorial: v•(u + w) = v•u + v•w. Assim, se θ for o ângulo entre v e w, temos

v•(u + w) = v•u + v•w

0 = 5cos(π/8) + 5cosθ

cos θ = -cos(π/8)

Para θ entre 0 e π, temos que θ = π - π/8 = 7π/8. Um desenho de um caso particular, quando v, u e w são coplanares, permite que verifiquemos facilmente essa resposta. Segue anexo da imagem!

 

View image rafaelhafliger7
Obrigado por passar por aqui. Estamos comprometidos em fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por sua visita. Estamos comprometidos em fornecer as melhores informações disponíveis. Volte a qualquer momento para mais. Volte ao Sistersinspirit.ca para obter as respostas mais recentes e informações dos nossos especialistas.