Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas.
Sagot :
Resposta: [tex]21 + 3\sqrt{5}[/tex] ou, de forma sintética, [tex]3(7 + \sqrt{5})[/tex]
Explicação passo-a-passo:
Dado os três pontos onde seus vértices se localizam, você pode calcular o tamanho de cada um dos lados aplicando a fórmula da distância entre dois pontos da geometria analítica, que pode ser derivada através do teorema de pitágoras.
I) Calculando o lado [tex]\overline{AB}[/tex]
[tex]\overline{AB} = \sqrt{(x_a - x_b)^2 + (y_a - y_b)^2} = \sqrt{(-2 -4)^2 + (5 - (-3))^2} = \sqrt{(-6)^2 + (8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10.[/tex]
II) Calculando o lado [tex]\overline{AC}[/tex]
[tex]\overline{AC} = \sqrt{(x_a - x_c)^2 + (y_a - y_c)^2} = \sqrt{(-2 - (-2))^2 + (5 - (-6))^2} = \sqrt{(0)^2 + (11)^2} = \sqrt{11^2} = |11| = 11.[/tex]
II) Calculando o lado [tex]\overline{BC}[/tex]
[tex]\overline{BC} = \sqrt{(x_b - x_c)^2 + (y_b - y_c)^2} = \sqrt{(4 - (-2))^2 + (-3 - (-6))^2} = \sqrt{(6)^2 + (3)^2} = \sqrt{36 + 9} = \sqrt{45} = 3\sqrt{5}[/tex]
Consequentemente, o perímetro (que é a soma dos lados), é dado por:
[tex]\overline{AB} + \overline{AC} + \overline{BC} = 10 + 11 + 3\sqrt{5} = 21 + 3\sqrt{5} = 3(7 + \sqrt{5})[/tex]
Obs.: no último passo, eu coloquei o 3 em evidência para a resposta ficar mais sintética, mas talvez nas alternativas da questão a resposta final fosse [tex]21 + 3\sqrt{5}.[/tex]
Agradecemos sua visita. Esperamos que as respostas que encontrou tenham sido benéficas. Não hesite em voltar para mais informações. Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Sistersinspirit.ca está aqui para suas perguntas. Não se esqueça de voltar para obter novas respostas.