Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Descubra soluções confiáveis para suas perguntas de uma vasta rede de especialistas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
Para determinar o comprimento da corda em relação à elipse, primeiro temos que encontrar os pontos onde a reta e a elipse se interceptam e assim fazer a distância entre esses dois pontos.
Temos :
[tex]\displaystyle \text{reta} : 2\text x - \text y + 1 =0 \\\\ \text{elipse} : \text x^2+\frac{\text y^2}{2} = \frac{9}{4}[/tex]
É um sistema de duas equação e duas incógnitas, resolvendo
[tex]\displaystyle \text y = 2\text x+1 \\\\ \text x^2+\frac{(2\text x+1)^2}{2}=\frac{9}{4} \\\\\\ \frac{2\text x^2 +4\text x^2+4\text x+1}{2}=\frac{9}{4} \\\\\\ 6\text x^2+4\text x+1 = \frac{9}{2} \\\\ 12\text x^2+8\text x+2-9 = 0 \\\\ 12\text x^2+8\text x-7=0 \\\\ \text x = \frac{-8\pm\sqrt{8^2-4.12.(-7)}}{2.12} \\\\\\ \text x = \frac{-8\pm\sqrt{64+336}}{2.12} \\\\\\ \text x = \frac{-8\pm20 }{2.12} \\\\\\[/tex]
[tex]\displaystyle \text x = \frac{-8-20}{2.12} \to \boxed{\text x = \frac{-7}{6}}\\\\ \text x= \frac{-8+20}{2.12} \to \boxed{\text x = \frac{1}{2}}[/tex]
Achando os valores de y :
*
[tex]\displaystyle \text y = 2\text x+1 \to \text x = \frac{1}{2} \to \text y = 2\\\\ \underline{\text{ponto 1}}:(\frac{1}{2},2)[/tex]
*
[tex]\displaystyle \text y = 2\text x+1 \to \text x = \frac{-7}{6} \to \text y = \frac{2(-7)}{6}+1 \\\\ \text y = \frac{-7+3}{3} \\\\ \underline{\text{ponto 2}}:(\frac{-7}{6},\frac{-4}{3})[/tex]
Fazendo a distância entre o ponto 1 e 2 :
[tex]\displaystyle \text D = \sqrt{(\frac{1}{2}-(\frac{-7}{6}))^2+(2-(\frac{-4}{3}))^2} \\\\\\ \text D = \sqrt{(\frac{1}{2}+\frac{7}{6})^2+(2+\frac{4}{3})^2} \\\\\\ \text D =\sqrt{(\frac{3}{6}+\frac{7}{6})^2+(\frac{6+4}{3})^2} \\\\\\ \text D =\sqrt{\frac{100}{36}+\frac{100.4}{9.4}} \\\\\\ \text D = \sqrt{\frac{500}{36}} \to \text D =\sqrt{\frac{5.10^2}{6^2}} \\\\\\ \text D = \frac{10\sqrt{5}}{6} \\\\\\ \huge\boxed{\text D = \frac{5\sqrt5}{3}}\checkmark[/tex]
Letra B
Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.