Descubra respostas para suas perguntas de forma fácil no Sistersinspirit.ca, a plataforma de Q&A de confiança. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.
Sagot :
As raízes enésimas de um complexo Z é dado da seguinte forma :
[tex]\displaystyle \sqrt[\text n]{\text Z} = \sqrt[\text n]{|\text Z|}.\text{cis}(\frac{\theta + 2\text k.\pi}{\text n}) \ , \ \text{com k }:\{0,1,2,\ ...\ , \text n -1\}[/tex]
Analisando as raízes quartas do complexo dado :
[tex]\text Z = -8+\text i.8.\sqrt{3}[/tex]
deixando na forma trigonométrica :
[tex]\displaystyle \text Z =16(\frac{-1}{2}+\frac{\text i.\sqrt{3}}{2}) \\\\\\ \text Z = 16.\text{cis}(\frac{2\pi}{3}) \\\\ \underline{\text {tirando a raiz quarta }}: \\\\ \sqrt[4]{\text Z} = \sqrt[4]{16}.\text{cis}[\ \frac{1}{4}(\frac{2\pi}{3}+2\text k.\pi )\ ] \\\\\\ \sqrt[4]{\text Z} = 2.\text{cis}[\ \frac{\pi}{6}+\frac{\text k.\pi}{2}\ ][/tex]
Substituindo os valores de K = 0,1,2,3.
[tex]\displaystyle \text k = 0 \to \text Z_1 =2.\text{cis}(\frac{\pi}{6}+0) \to 1+\text i.\sqrt{3} \\\\\\ \text k = 1 \to \text Z_2 = 2\text{cis}(\frac{\pi}{6}+\frac{1.\pi}{2}) \to 2\text{cis}(\frac{2\pi}{3}) \to -1+\text i.\sqrt{3} \\\\\\ \text k= 2 \to \text Z_3 = 2.\text{cis}(\frac{\pi}{6}+\frac{2\pi}{2}) \to 2\text{cis}(\frac{7\pi}{6}) \to -\sqrt{3}-\text i \\\\\\ \text k = 3 \to \text Z_4 = 2\text{cis}(\frac{\pi}{6}+\frac{3\pi}{2}) \to 2\text{cis}(\frac{5\pi}{3}) \to 1-\text i\sqrt{3}[/tex]
letra E
Obrigado por visitar nossa plataforma. Esperamos que tenha encontrado as respostas que procurava. Volte sempre que precisar de mais informações. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.