O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Nossa plataforma de perguntas e respostas conecta você com especialistas prontos para fornecer informações precisas em diversas áreas do conhecimento. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.

Um jogador de golfe deu três tacadas. Na 1ª tacada, a bola foi lançada segundo um ângulo de 30° em relação ao solo. Na 2ª e na 3ª tacadas, o ângulo foi de 45° e 60°, respectivamente. Despreze a resistência do ar e efeitos aerodinâmicos de rotação da bola.
A) Por que a 2ª bola foi lançada mais distante?
B) Por que a 1ª e a 3ª bolas foram lançadas a uma mesma distância?
C) Por que a 3ª bola atingiu a maior altura?​


Sagot :

Lançamento oblíquo:

[tex]\mathrm{Alcance\ m\acute{a}ximo}\ \to\ \boxed{R_{m\acute{a}x}=\dfrac{v_0^2\sin{2\theta}}{g}}[/tex]

[tex]\mathrm{Altura\ m\acute{a}xima}\ \to\ \boxed{H_{m\acute{a}x}=\dfrac{v_0^2\sin^2{\theta}}{2g}}[/tex]

1ª tacada:

[tex]\theta_1=\dfrac{\pi}{6}\ \therefore\ R_1=\dfrac{v_0^2\sin{\tfrac{\pi}{3}}}{g}\ \therefore\ \boxed{R_1=\dfrac{\sqrt{3}}{2}\bigg(\dfrac{v_0^2}{g}\bigg)}[/tex]

[tex]H_1=\dfrac{v_0^2\sin^2{\tfrac{\pi}{6}}}{2g}=\dfrac{\big(\tfrac{1}{2}\big)^2}{2}\bigg(\dfrac{v_0^2}{g}\bigg)\ \therefore\ \boxed{H_1=\dfrac{1}{8}\bigg(\dfrac{v_0^2}{g}\bigg)}[/tex]

2ª tacada:

[tex]\theta_2=\dfrac{\pi}{4}\ \therefore\ R_2=\dfrac{v_0^2\sin{\tfrac{\pi}{2}}}{g}\ \therefore\ \boxed{R_2=\dfrac{v_0^2}{g}}[/tex]

[tex]H_2=\dfrac{v_0^2\sin^2{\tfrac{\pi}{4}}}{2g}=\dfrac{\big(\tfrac{1}{\sqrt{2}}\big)^2}{2}\bigg(\dfrac{v_0^2}{g}\bigg)\ \therefore\ \boxed{H_2=\dfrac{1}{4}\bigg(\dfrac{v_0^2}{g}\bigg)}[/tex]

3ª tacada:

[tex]\theta_3=\dfrac{\pi}{3}\ \therefore\ R_3=\dfrac{v_0^2\sin{\tfrac{2\pi}{3}}}{g}\ \therefore\ \boxed{R_3=\dfrac{\sqrt{3}}{2}\bigg(\dfrac{v_0^2}{g}\bigg)}[/tex]

[tex]H_3=\dfrac{v_0^2\sin^2{\tfrac{\pi}{3}}}{2g}=\dfrac{\big(\tfrac{\sqrt{3}}{2}\big)^2}{2}\bigg(\dfrac{v_0^2}{g}\bigg)\ \therefore\ \boxed{H_3=\dfrac{3}{8}\bigg(\dfrac{v_0^2}{g}\bigg)}[/tex]

A) O alcance máximo de um lançamento oblíquo ocorre quando [tex]\theta=\dfrac{\pi}{4}[/tex], pois este é calculado em função de [tex]\sin{2\theta}=\sin{\tfrac{\pi}{2}}=1[/tex], que é o valor máximo para o seno. Logo, a 2ª tacada terá o maior alcance entre as três.

B) Porque [tex]\sin{\tfrac{\pi}{3}}=\sin{\tfrac{2\pi}{3}}=\tfrac{\sqrt{3}}{2}[/tex]. Os senos dos ângulos de lançamento da 1ª e 2ª tacadas multiplicados por 2 é igual. Logo, o alcance será o mesmo.

C) A fórmula da altura é baseada no [tex]\sin^2{\theta}[/tex]. Como a 3ª tacada possui o maior ângulo de lançamento, terá também a maior altura máxima.