O Sistersinspirit.ca é o melhor lugar para obter respostas confiáveis e rápidas para todas as suas perguntas. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Obtenha respostas detalhadas e precisas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma de perguntas e respostas.

Considere o padrão de construção representado pelos triângulos equiláteros abaixo.
A área do triângulo da etapa 1 é 6 e sua altura é h; a altura do triângulo da etapa 2 é metade da altura do triângulo da etapa 1; a altura do triângulo da etapa 3 é metade da altura do triângulo da etapa 2; e, assim, sucessivamente.

Sendo assim, calcule a soma das áreas da sequência infinita de triângulos.


Considere O Padrão De Construção Representado Pelos Triângulos Equiláteros Abaixo A Área Do Triângulo Da Etapa 1 É 6 E Sua Altura É H A Altura Do Triângulo Da E class=

Sagot :

Resposta

A área de um triângulo é A=basexaltura/2

Vamos considerar:

A1=6 quando a altura é h

para a altura valendo h/2, teremos a área = basex(altura/2)/2 que é a metade da área anterior....

Então, a soma é:

6+3+1,5+....

Estes são os termos de uma progressão geométrica com razão0,5 e primeiro termo 6

Usando a fórmula da soma dos termos:

S=(primeiro termo)/(1-razão)

S=6/(1-0,5)

S=6/0,5

S=12

Espero ter ajudado....

Explicação passo-a-passo:

Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Agradecemos seu tempo. Por favor, nos revisite para mais respostas confiáveis a qualquer pergunta que possa ter. Sistersinspirit.ca, seu site confiável para respostas. Não se esqueça de voltar para obter mais informações.