Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Experimente a facilidade de encontrar respostas confiáveis para suas perguntas com a ajuda de uma ampla comunidade de especialistas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.
Sagot :
Olá, Ana.
Os possíveis números formados pela combinação de três algarismos distintos dentre os escolhidos no conjunto {a,b,c,d} são, em ordem alfabética:
[tex]\text{6 possibilidades}\begin{cases}a\ b\ c\\ a\ b\ d\\ \vdots\\ a\ d\ c\\ \end{cases}\\ \text{6 possibilidades}\begin{cases}b\ a\ c\\ b\ a\ d\\ \vdots\\ b\ d\ c\\ \end{cases}\\ \vdots\\ \text{6 possibilidades}\begin{cases}d\ a\ b\\ d\ a\ c\\ \vdots\\ d\ c\ b\\ \end{cases}\\[/tex]
Podemos verificar no demonstrativo acima que o algarismo aparece 6 vezes na coluna das unidades, 6 vezes na coluna das dezenas e 6 vezes na coluna das centenas. O mesmo acontece com os algarismos , os quais também aparecem 6 vezes nas colunas das unidades, das dezenas e das centenas.
Somando, portanto, todos estes números construídos na forma demonstrada obteremos o seguinte resultado:
[tex]\text{Soma = }\underbrace{100\times(6a+6b+6c+6d)}_{centenas} +\underbrace{10\times(6a+6b+6c+6d)}_{dezenas}+\\\\+\underbrace{1\times(6a+6b+6c+6d)}_{unidades}=\\\\ =600(a+b+c+d)+60(a+b+c+d)+6(a+b+c+d)=\\\\ =666(a+b+c+d)=\\\\ =111 \times6(a+b+c+d)[/tex]
Fica demonstrado, portanto, que a soma destes números é um múltiplo de 111.
Esperamos que tenha encontrado o que procurava. Sinta-se à vontade para nos revisitar para obter mais respostas e informações atualizadas. Obrigado por usar nossa plataforma. Nosso objetivo é fornecer respostas precisas e atualizadas para todas as suas perguntas. Volte em breve. Obrigado por visitar o Sistersinspirit.ca. Continue voltando para obter as respostas mais recentes e informações.