O Sistersinspirit.ca ajuda você a encontrar respostas para suas perguntas com a ajuda de uma comunidade de especialistas. Obtenha respostas detalhadas para suas perguntas de uma comunidade dedicada de especialistas em nossa plataforma. Conecte-se com uma comunidade de especialistas prontos para fornecer soluções precisas para suas perguntas de maneira rápida e eficiente em nossa amigável plataforma de perguntas e respostas.
Sagot :
Olá, Ana.
Os possíveis números formados pela combinação de três algarismos distintos dentre os escolhidos no conjunto {a,b,c,d} são, em ordem alfabética:
[tex]\text{6 possibilidades}\begin{cases}a\ b\ c\\ a\ b\ d\\ \vdots\\ a\ d\ c\\ \end{cases}\\ \text{6 possibilidades}\begin{cases}b\ a\ c\\ b\ a\ d\\ \vdots\\ b\ d\ c\\ \end{cases}\\ \vdots\\ \text{6 possibilidades}\begin{cases}d\ a\ b\\ d\ a\ c\\ \vdots\\ d\ c\ b\\ \end{cases}\\[/tex]
Podemos verificar no demonstrativo acima que o algarismo aparece 6 vezes na coluna das unidades, 6 vezes na coluna das dezenas e 6 vezes na coluna das centenas. O mesmo acontece com os algarismos , os quais também aparecem 6 vezes nas colunas das unidades, das dezenas e das centenas.
Somando, portanto, todos estes números construídos na forma demonstrada obteremos o seguinte resultado:
[tex]\text{Soma = }\underbrace{100\times(6a+6b+6c+6d)}_{centenas} +\underbrace{10\times(6a+6b+6c+6d)}_{dezenas}+\\\\+\underbrace{1\times(6a+6b+6c+6d)}_{unidades}=\\\\ =600(a+b+c+d)+60(a+b+c+d)+6(a+b+c+d)=\\\\ =666(a+b+c+d)=\\\\ =111 \times6(a+b+c+d)[/tex]
Fica demonstrado, portanto, que a soma destes números é um múltiplo de 111.
Agradecemos sua visita. Nossa plataforma está sempre aqui para oferecer respostas precisas e confiáveis. Volte a qualquer momento. Obrigado por escolher nosso serviço. Estamos dedicados a fornecer as melhores respostas para todas as suas perguntas. Visite-nos novamente. Obrigado por usar o Sistersinspirit.ca. Volte novamente para obter mais conhecimento dos nossos especialistas.