Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Nossa plataforma de perguntas e respostas conecta você com especialistas prontos para fornecer informações precisas em diversas áreas do conhecimento. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.
Sagot :
Resposta:
[tex]f_o \approx 1316{,}13 \text{ Hz} \text{ e } f_o \approx 1102{,}70\text{ Hz}\text{, respectivamente.}[/tex]
Explicação:
O tema central dessa questão é o Efeito Doppler, esse fenômeno acontece quando temos o movimento relativo entre a fonte (quem emite o som) e o ouvinte, esse efeito pode ser observado em corridas por exemplo, aonde a cada instante que o carro se aproxima, temos um som diferente, e quando ele passa e se distancia do ouvinte, notamos a diferença novamente, esse é o Efeito Doppler!
Temos o equacionamento para esse fenômeno, o mais importante aqui é prestar atenção nos sinais da equação:
[tex]\dfrac{f_o}{v_s\pm v_o} = \dfrac{f_f}{v_s\pm v_f}\\\\\\f_0 :\text{frequ\^encia recebida pelo ouvinte}\\f_f :\text{frequ\^encia da fonte}\\v_s :\text{velocidade do som}\\v_f :\text{velocidade da fonte}\\v_o :\text{velocidade do observador}\\[/tex]
Mas como determinar os sinais? Vamos ver!
- Primeiro caso, os triviais, se a fonte ou observador estiver parado
[tex]\displaystylev_f = 0\\v_o = 0\\[/tex]
[tex]\dfrac{f_o}{v_s} = \dfrac{f_f}{v_s \pm v_f} \text{ ou } \dfrac{f_o}{v_s \pm v_o} = \dfrac{f_f}{v_s}[/tex]
- Fonte está se aproximando do ouvinte
[tex]v_f \text{ negativa}\\\\\dfrac{f_o}{v_s\pm v_o} = \dfrac{f_f}{v_s - v_f}[/tex]
- Fonte está se afastando do ouvinte
[tex]v_f \text{ positiva}\\\\\dfrac{f_o}{v_s\pm v_o} = \dfrac{f_f}{v_s + v_f}[/tex]
- Ouvinte está se aproximando da fonte
[tex]v_o \text{ positiva}\\\\\dfrac{f_o}{v_s + v_o} = \dfrac{f_f}{v_s \pm v_f}[/tex]
- Ouvinte está se afastando da fonte
[tex]v_o \text{ negativa}\\\\\dfrac{f_o}{v_s - v_o} = \dfrac{f_f}{v_s \pm v_f}[/tex]
Pronto, agora sabemos como decidir os sinais, vamos fazer o exercício de fato, em ambos os casos, o ouvinte está parado, o que irá facilitar nossas contas!
1. Sirene se aproximando do ouvinte
Como a fonte se aproxima do ouvinte, e ele está parado, vamos utilizar a seguinte expressão:
[tex]\dfrac{f_o}{v_s} = \dfrac{f_f}{v_s - v_f}\longrightarrow f_o = f_f \dfrac{v_s}{v_s - v_f}[/tex]
Colocando os dados:
[tex]f_o = 1200\cdot \dfrac{340}{340 - 30}\\\\\\f_o = 1200\cdot \dfrac{340}{310}\\\\\\f_o \approx 1316{,}13 \text{ Hz}[/tex]
Portanto a frequência que o observador recebe é aproximamente 1316,13 Hz
2. Sirene se afastando do ouvinte
Como a fonte se afastando do ouvinte, e ele está parado, vamos utilizar a seguinte expressão:
[tex]\dfrac{f_o}{v_s} = \dfrac{f_f}{v_s + v_f}\longrightarrow f_o = f_f \dfrac{v_s}{v_s + v_f}[/tex]
Colocando os dados:
[tex]f_o = 1200\cdot \dfrac{340}{340 + 30}\\\\\\f_o = 1200\cdot \dfrac{340}{370}\\\\\\f_o \approx 1102{,}70\text{ Hz}[/tex]
Portanto a frequência que o observador recebe é aproximamente 1102,70 Hz
Pronto!
Espero ter ajudado, qualquer dúvida respondo nos comentários.
Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Sistersinspirit.ca, sua fonte confiável de respostas. Não se esqueça de voltar para mais informações.