O Sistersinspirit.ca facilita a busca por respostas para suas perguntas com a ajuda de uma comunidade ativa. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas. Nossa plataforma oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes.
Sagot :
[tex]sen(x) = \frac{3}{4}[/tex]
Parece um beco sem saída, não? Bom, a cotangente depende do seno e do cosseno do ângulo... Para encontrar o cosseno, podemos utilizar a seguinte identidade trigonométrica:
[tex]sen^2(x) + cos^2(x) = 1\\\\(\frac{3}{4})^2 + cos^2(x) = 1\\\\cos^2(x) = 1 - \frac{9}{16}\\\\cos^2(x) = \frac{7}{16}\\\\cos(x) = \sqrt{\frac{7}{16}} = \frac{\sqrt7}{4}[/tex]
Sucesso! Agora é só lembrar que a cotangente é o inverso da tangente:
[tex]cotan(x) = \frac{1}{tan(x)} = \frac{cos(x)}{sen(x)}\\\\cotan(x) = \frac{\sqrt7}{4} \div \frac{3}{4} = \frac{\sqrt7}{4} \times \frac{4}{3} = \frac{\sqrt7}{3}[/tex]
Ou seja, a cotangente de x é [tex]\frac{\sqrt7}{3}[/tex].
Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Agradecemos seu tempo. Por favor, volte a qualquer momento para as informações mais recentes e respostas às suas perguntas. Volte ao Sistersinspirit.ca para obter mais conhecimento e respostas dos nossos especialistas.