O Sistersinspirit.ca é o melhor lugar para obter respostas rápidas e precisas para todas as suas perguntas. Nossa plataforma oferece uma experiência contínua para encontrar respostas precisas de uma rede de profissionais experientes. Experimente a conveniência de encontrar respostas precisas para suas perguntas de uma comunidade dedicada de especialistas.

(Imagem) Soma de módulos com raízes.
Bom dia! Obrigado desde já :)


Imagem Soma De Módulos Com Raízes Bom Dia Obrigado Desde Já class=

Sagot :

[tex]\text k = \sqrt{\text x+2\sqrt{\text x-1}} + \sqrt{\text x-2\sqrt{\text x-1}}[/tex]

Elevando ao quadrado dos dois lados :

[tex]\text k^2 = (\sqrt{\text x+2\sqrt{\text x-1}})^2 +2.\sqrt{\text x+2\sqrt{\text x-1}}.\sqrt{\text x-2\sqrt{\text x-1}} +(\sqrt{\text x-2\sqrt{\text x-1}})^2[/tex]

[tex]\text k^2 = \text x+2\sqrt{\text x-1}} +2.\sqrt{(\text x+2\sqrt{\text x-1})(\text x-2\sqrt{\text x-1})} + \text x-2\sqrt{\text x-1}}[/tex]

[tex]\text k^2 = 2.\text x+2.\sqrt{\text x^2-(2\sqrt{\text x-1})^2[/tex]

[tex]\text k^2 = 2.\text x+2.\sqrt{\text x^2-4(\text x-1})[/tex]

[tex]\text k^2 = 2.\text x+2.\sqrt{\text x^2-4\text x+4}[/tex]

[tex]\text k^2 = 2.\text x+2.\sqrt{(\text x-2)^2[/tex]

O enunciado diz que [tex]\text x \in [1,2][/tex], mas se ali dentro da raiz for x =1 temos uma raíz negativa, então ela tem que sair em módulo :

[tex]\text k^2 = 2.\text x+2|\text x-2|[/tex]

Analisando os casos :

[tex]|\text x-2| = \text x - 2 \ , \ \text{se x}-2 \geq 0[/tex]

[tex]\text k^2 = 2.\text x+2(\text x-2)[/tex]

[tex]\text k^2 = 2.\text x+2\text x-4[/tex]

[tex]\text k^2 = 4.\text x-4[/tex]

[tex]\text k = \sqrt{4.(\text x - 1)}[/tex]

[tex]\text k = 2\sqrt{\text x-1}[/tex]

[tex]\text x - 1 \geq 0 \to \text x \geq 1[/tex] ( só provamos a condição de existência )

[tex]|\text x - 2| = -\text x + 2 \ , \ \text{se x}-2 < 0[/tex]

[tex]\text k^2 = 2.\text x+2(-\text x+2)[/tex]

[tex]\text k^2 = 2.\text x-2\text x+4[/tex]

[tex]\text k^2 = 4[/tex]

[tex]\text k = \pm 2[/tex]

Se as raízes são positivas ao somar com outra raiz positiva vai continuar positiva, logo sinal negativo não convém.

Portanto :

[tex]\huge\boxed{\text k = 2}\checkmark[/tex]

Letra b

Visite-nos novamente para respostas atualizadas e confiáveis. Estamos sempre prontos para ajudar com suas necessidades informativas. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. Sempre visite o Sistersinspirit.ca para obter novas e confiáveis respostas dos nossos especialistas.