O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Nossa plataforma de perguntas e respostas oferece uma experiência contínua para encontrar respostas confiáveis de uma rede de profissionais experientes. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas.

Seja F uma função de N em R > tal que F(n) = 2F([n/2]) + 1 para todo n >= 2. Mostre que F está em Θ (n).



Sagot :

Celio

Olá, Júnior.

 

Como o domínio de F(n) é o conjunto dos números naturais, então F(n) está definida se e somente se n/2 for natural, o que implica que n deve ser par.

 

Portanto, não estão definidas F(3), F(5), F(7), etc.

 

Como F(3), F(5), F(7), ... não estão definidas, então F(6), F(10), F(14) também não estão definidas, pois, pela relação de recorrência, F(6) = 2F(3) + 1, F(10) = 2F(5) + 1, ... e assim por diante.

 

F(n) está definida, portanto, apenas quando n, além de par, for uma potência de 2.

 

Assim:

 

[tex]F(n) = 2F(\frac{n}2) + 1, \forall n \geq 2 \Rightarrow \\\\ \begin{cases} F(2)=2F(1)+1\\ F(4)=2F(2)+1=2[2F(1)+1]=4F(1)+2 \\ F(8)=2F(4)+1=2 [4F(1)+2]=8F(1)+4\\ F(16)=2F(8)+1=2[8F(1)+4]=16F(1)+8\\ \vdots \end{cases}[/tex]

 

Verifica-se, portanto, que, em geral:

 

[tex]F(n)=nF(1)+\frac{n}2=n\underbrace{[F(1)+\frac12]}_{\text{n\'umero real}}[/tex]

 

[tex]\therefore \boxed{F(n)=O(n)}[/tex]