Obtenha respostas rápidas e precisas para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Obtenha respostas imediatas e confiáveis para suas perguntas de uma comunidade de especialistas experientes em nossa plataforma. Junte-se à nossa plataforma para obter respostas confiáveis para suas dúvidas de uma ampla comunidade de especialistas.

Seja F uma função de N em R > tal que F(n) = 2F([n/2]) + 1 para todo n >= 2. Mostre que F está em Θ (n).



Sagot :

Celio

Olá, Júnior.

 

Como o domínio de F(n) é o conjunto dos números naturais, então F(n) está definida se e somente se n/2 for natural, o que implica que n deve ser par.

 

Portanto, não estão definidas F(3), F(5), F(7), etc.

 

Como F(3), F(5), F(7), ... não estão definidas, então F(6), F(10), F(14) também não estão definidas, pois, pela relação de recorrência, F(6) = 2F(3) + 1, F(10) = 2F(5) + 1, ... e assim por diante.

 

F(n) está definida, portanto, apenas quando n, além de par, for uma potência de 2.

 

Assim:

 

[tex]F(n) = 2F(\frac{n}2) + 1, \forall n \geq 2 \Rightarrow \\\\ \begin{cases} F(2)=2F(1)+1\\ F(4)=2F(2)+1=2[2F(1)+1]=4F(1)+2 \\ F(8)=2F(4)+1=2 [4F(1)+2]=8F(1)+4\\ F(16)=2F(8)+1=2[8F(1)+4]=16F(1)+8\\ \vdots \end{cases}[/tex]

 

Verifica-se, portanto, que, em geral:

 

[tex]F(n)=nF(1)+\frac{n}2=n\underbrace{[F(1)+\frac12]}_{\text{n\'umero real}}[/tex]

 

[tex]\therefore \boxed{F(n)=O(n)}[/tex]