Obtenha soluções para suas perguntas no Sistersinspirit.ca, a plataforma de Q&A mais rápida e precisa. Explore milhares de perguntas e respostas de uma ampla gama de especialistas em diversas áreas em nossa plataforma de perguntas e respostas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.

Seja F um função de N em R> tal que F(n) = 4F([n/2]) + n quando n >= 2. Mostre que F está em Θ (n²). Sugestão: mostre que 1/4n² <= F(n) <= 8n² para todo n suficientemente grande.



Sagot :

Celio

Olá, Júnior.

 

Como o domínio de F(n) é o conjunto dos números naturais, então F(n) está definida se e somente se n/2 for natural, o que implica que n deve ser par.

 

Portanto, não estão definidas F(3), F(5), F(7), etc.

 

Como F(3), F(5), F(7), ... não estão definidas, então F(6), F(10), F(14) também não estão definidas, pois, pela relação de recorrência, F(6) = 2F(3) + 1, F(10) = 2F(5) + 1, ... e assim por diante.

 

F(n) está definida, portanto, apenas quando n, além de par, for uma potência de 2.

 

Assim:

 

[tex]F(n) = 4F(\frac{n}2) + n, \forall n \geq 2 \Rightarrow \\\\ \begin{cases} F(2)=4F(1)+2=2^2F(1)+2\cdot \frac22\\ F(4)=4F(2)+4=4[4F(1)+2]=16F(1)+8=4^2F(1)+4\cdot \frac42 \\ F(8)=4F(4)+8=4[16F(1)+8]=64F(1)+32=\\=8^2F(1)+8\cdot \frac82\\ F(16)=4F(8)+16=4[64F(1)+32]+16=256F(1)+128=\\=16^2F(1)+16\cdot \frac{16}2\\ \vdots \end{cases}[/tex]

 

Verifica-se, portanto, que, em geral:

 

[tex]F(n)=n^2F(1)+n\cdot \frac{n}2=n^2F(1)+\frac{n^2}2=n^2\underbrace{[F(1) + \frac12]}_{n\'umero\ real}[/tex]

 

[tex]\therefore \boxed{F(n)=O(n^2)}[/tex]