Obtenha as melhores soluções para todas as suas perguntas no Sistersinspirit.ca, a plataforma de Q&A de confiança. Junte-se à nossa plataforma de perguntas e respostas e obtenha respostas precisas para todas as suas dúvidas com profissionais de várias disciplinas. Experimente a conveniência de obter respostas precisas para suas perguntas de uma comunidade dedicada de profissionais.
Sagot :
⠀
⠀⠀☞ Uma tabela-verdade analisa a validade (verdade ou falsidade) entre duas ou mais proposições através de conectivos lógicos. ✅
⠀
⠀
⠀⠀ Antes de construirmos uma Tabela-Verdade vamos rever o significado de alguns conectivos lógicos:
⠀
[tex]\red{\boxed{\pink{\boxed{\begin{array}{rlclr}&&&&\\&\orange{\sf p \cup q}&\pink{\Longrightarrow}&\orange{\sf p~ou~q}&\\&&&&\\&\orange{\sf p \cap q}&\pink{\Longrightarrow}&\orange{\sf p~e~q}&\\&&&&\\&\orange{\sf p \rightarrow q}&\pink{\Longrightarrow}&\orange{\sf se~p~ent\tilde{a}o~q}&\\&&&&\\&\orange{\sf p \iff q}&\pink{\Longrightarrow}&\orange{\sf p~se,~e~somente~se,~q}&\\&&&&\\&\orange{\sf \tilde{}~p}&\pink{\Longrightarrow}&\orange{\sf n\tilde{a}o~p}&\\&&&&\\\end{array}}}}}[/tex]
⠀
⠀⠀Desta forma, podemos construir a seguinte Tabela-Verdade pela combinação dos valores V (verdade) e F (falso) para as proposições P e Q:
⠀
[tex]\red{\boxed{\pink{\boxed{\orange{\begin{array}{c|c|c|c|c|c}&&&&&\\\sf ~p~~&\sf ~~q~~&\sf p \cup q&\sf p \cap q&\sf p \rightarrow q&\sf p \iff q\\&&&&&\\\sf V&\sf V&\sf V&\sf V&\sf V&\sf V\\&&&&&\\\sf V&\sf F&\sf V&\sf F&\sf F&\sf F\\&&&&&\\\sf F&\sf V&\sf V&\sf F&\sf V&\sf F\\&&&&&\\\sf F&\sf F&\sf F&\sf F&\sf V&\sf V\\&&&&&\\\end{array}}}}}}[/tex]
⠀
⠀
⠀
⠀
[tex]\bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
⠀⠀☀️ Exercícios com Tabela Verdade:
⠀
✈ https://brainly.com.br/tarefa/38348117
✈ https://brainly.com.br/tarefa/38427225
[tex]\bf\large\red{\underline{\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad}}[/tex]✍
⠀
⠀
⠀
⠀
[tex]\bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]☁
⠀⠀⠀⠀☕ [tex]\Large\blue{\text{\bf Bons~estudos.}}[/tex]
⠀
([tex]\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios}[/tex]) ☄
[tex]\bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }}\LaTeX[/tex]✍
❄☃ [tex]\sf(\purple{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly})[/tex] ☘☀
⠀
⠀
⠀
⠀
[tex]\gray{"Absque~sudore~et~labore~nullum~opus~perfectum~est."}[/tex]
Obrigado por visitar. Nosso objetivo é fornecer as respostas mais precisas para todas as suas necessidades informativas. Volte em breve. Esperamos que tenha achado útil. Sinta-se à vontade para voltar a qualquer momento para mais respostas precisas e informações atualizadas. O Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.