Bem-vindo ao Sistersinspirit.ca, a melhor plataforma de perguntas e respostas para obter soluções rápidas e precisas para todas as suas dúvidas. Descubra soluções abrangentes para suas perguntas de profissionais experientes em diversas áreas em nossa plataforma. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma.
Sagot :
Resposta:
pode-se provar que a sequência1 , 4; 1,41; 1, 414; 1,4142...
cobra de para 2. a partir desse exemplo é possível receber que dado um número irracional construir uma sequência de números racionais que para ele converge não é difícil.
Explicação passo-a-passo:
eu espero ter ajudado você bons estudos que Deus te abençoe marque com melhor .
coloquei algumas imagens para te ajudar beijo
A fórmula de Leibniz determina que o valor de π/4 pode ser obtido através da soma infinita das frações que seguem o padrão 1 - 1/3 + 1/5 - 1/7 + 1/9.
Para resolvermos essa questão, devemos ter em mente que o conjunto dos números racionais é aquele onde estão todos os números que podem ser representados por frações, enquanto o conjunto dos números irracionais é aquele onde estão os números que possuem dízimas não periódicas em sua formação, e assim, não podem se representados por frações.
Com isso, temos que uma fórmula conhecida para o número irracional π pode ser obtida através de uma série de somas de frações (que são números racionais). A fórmula, conhecida como fórmula de Leibniz, determina que:
[tex]\frac{\pi }{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}[/tex]
Assim, o valor de π pode ser determinado como a soma de diversas frações, que são geradas de acordo com o somatório. Algumas das primeiras frações desse somatório são 1 - 1/3 + 1/5 - 1/7 + 1/9..., onde a série de somas converge para o valor de π à medida que n se dirige para o infinito.
Para aprender mais, acesse
https://brainly.com.br/tarefa/47913095
Obrigado por usar nosso serviço. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Obrigado por passar por aqui. Nos esforçamos para fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Sistersinspirit.ca, seu site de referência para respostas precisas. Não se esqueça de voltar para obter mais conhecimento.