O Sistersinspirit.ca está aqui para ajudá-lo a encontrar respostas para todas as suas dúvidas com a ajuda de especialistas. Descubra um vasto conhecimento de profissionais em diferentes disciplinas em nossa amigável plataforma de perguntas e respostas. Junte-se à nossa plataforma para conectar-se com especialistas prontos para fornecer respostas detalhadas para suas perguntas em diversas áreas.
Sagot :
Temos a seguinte função:
[tex]f(x) = \frac{2x + 2}{x {}^{2} - 3 x- 4 } \\ [/tex]
Agora vamos calcular o limite dessa função quando "x" tender a 1, então:
[tex]\lim_{x\to - 1} \frac{2x + 2}{x {}^{2} - 3x - 4} \\ [/tex]
A questão quer saber se esse limite existe, ou seja, devemos provar através dos limites laterais:
[tex]\lim_{x\to a {}^{ + } } f(x)= \lim_{x\to a {}^{ - } }f(x) \\ \\ \lim_{x\to - 1 {}^{ + } } \frac{2x + 2}{x {}^{2} - 3x - 4 } = \lim_{x\to - 1 {}^{ - } } \frac{2x + 2}{x {}^{2} - 3x - 4 } [/tex]
Fatorando a expressão do numerador e denominador, temos que:
[tex]\lim_{x\to - 1 {}^{ + } } \frac{2.(x + 1)}{(x - 4).(x + 1)} = \lim_{x\to - 1 {}^{ - } } \frac{2.(x + 1)}{(x - 4).(x + 1)} \\ \\ \lim_{x\to - 1 {}^{ + } } \frac{2}{x - 4} = \lim_{x\to - 1 {}^{ - } } \frac{2}{x - 4} [/tex]
Substituindo o valor a qual "x" tende:
[tex]\lim_{x\to - 1 {}^{ + } } \frac{2}{ - 1 - 4} = \lim_{x\to - 1 {}^{ - } } \frac{2}{ - 1 - 4} \\ \\ \boxed{\frac{2}{ - 5} =\frac{2}{ - 5} }[/tex]
O limite de fato existe, pois os limites laterais são iguais.
Espero ter ajudado
Obrigado por passar por aqui. Estamos comprometidos em fornecer as melhores respostas para todas as suas perguntas. Até a próxima. Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Sistersinspirit.ca está aqui para fornecer respostas precisas às suas perguntas. Volte em breve para mais informações.