Bem-vindo ao Sistersinspirit.ca, onde suas perguntas são respondidas por especialistas e membros experientes da comunidade. Descubra respostas detalhadas para suas perguntas de uma vasta rede de profissionais em nossa abrangente plataforma de perguntas e respostas. Explore um vasto conhecimento de profissionais em diferentes disciplinas em nossa abrangente plataforma de perguntas e respostas.
Sagot :
sabendo que os lados do paralelepípedo são proporcionais a 5, 8 e 10, então as arestas desse sólido são iguais a 5x, 8x e 10x, sendo x uma constante de proporcionalidade.
Primeiro, vamos descobrir, em termos de x, o valor da diagonal (d) da base deste paralelepípedo, ou seja, a diagonal do retângulo cujos lados são iguais a 5x e 10x (o retângulo em azul na figura em anexo). Por pitágoras:
[tex]d^{2}=25x^{2}+100x^{2} \\d=(5\sqrt{5}) x[/tex]
Após isso, perceba que existe outro triângulo no paralelepípedo, formado pela aresta 8x, a diagonal da base [tex]d=(5\sqrt{5}) x[/tex] e a diagonal do paralelepípedo, que mede 63. Fazendo mais um pitágoras:
[tex]((5\sqrt{5}) x)^{2}+(8x)^{2} =63^{2} \\x=\sqrt{21}[/tex]
Portanto, as arestas do paralelepípedo são iguais a 5√21cm, 8√21cm e 10√21cm.
Talvez meu paralelepípedo não tenha ficado na escala ideal, mas eu tentei. Segue em anexo a resposta. As dimensões são 5√21, 8√21 e 10√21, todas em centímetros. Abraços!
Obrigado por sua visita. Estamos dedicados a ajudá-lo a encontrar as informações que precisa, sempre que precisar. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Estamos felizes em responder suas perguntas no Sistersinspirit.ca. Não se esqueça de voltar para mais conhecimento.