Bem-vindo ao Sistersinspirit.ca, onde você pode obter respostas rápidas e precisas com a ajuda de especialistas. Experimente a facilidade de obter respostas rápidas e precisas para suas perguntas com a ajuda de profissionais em nossa plataforma. Explore milhares de perguntas e respostas de uma comunidade de especialistas em nossa plataforma amigável.
Sagot :
⠀
⠀⠀☞ Pela propriedade dos triângulos retângulos terem sempre 180º na soma dos ângulos internos e sendo a soma de ângulos suplementares também sempre igual à 180º pudemos demonstrar que o ângulo AMB é igual à semidiferença dos ângulos agudos do triângulo. ✅
⠀
⠀
⠀⠀ Vamos inicialmente desenhar o nosso triângulo (as imagens a seguir não são visualizáveis pelo App Brainly, experimente acessar a resposta pelo navegador do seu celular):
⠀
⠀
[tex]\setlength{\unitlength}{0.95cm}\begin{picture}(6,5)\thicklines\put(0,0){\line(1,0){9.7}}\put(0,0){\line(2,3){3}}\put(3,4.5){\line(3,-2){6.7}}\bezier(0.45,0.65)(0.8,0.6)(0.9,0)\put(0.4,0.2){$\gamma$}\bezier(8.7,0.65)(8.5,0.7)(8.45,0)\put(8.7,0.2){$\beta$}\put(2.75,4.1){\line(3,-2){0.4}}\put(3.15,3.85){\line(2,3){0.25}}\put(3.5,4.5){A}\put(-0.6,0){B}\put(9.9,0){C}\put(3.1,4.15){\circle*{0.1}}\put(7,5.7){\dashbox{0.1}(5,1){\text{\Large$\sf \gamma + \beta + 90^{\circ}= 180^{\circ}$}}}\put(8.5,5){\LARGE$\downdownarrows$}\put(10.5,5){\LARGE$\downdownarrows$}\put(7.5,3.5){\dashbox{0.1}(4,1){\text{\Large$\sf \gamma + \beta = 90^{\circ}$}}}\end{picture}[/tex]
⠀
⠀
⠀⠀Da soma interna dos ângulos do triângulo ABC podemos extraímos que:
⠀
⠀⠀[tex]\Large\gray{\boxed{\sf\blue{~~I)~\dfrac{\gamma + \beta}{2} = \dfrac{90^{\circ}}{2} = 45^{\circ}~~~}}}[/tex]
⠀
⠀⠀Continuemos nossa análise geométrica:
⠀
⠀
[tex]\setlength{\unitlength}{0.55cm}\begin{picture}(6,5)\thicklines\put(-8.2,0){\line(1,0){17.9}}\put(0,0){\line(2,3){3}}\put(3,4.5){\line(3,-2){6.7}}\bezier(0.45,0.65)(0.8,0.6)(0.9,0)\put(1,0.2){$\gamma$}\bezier(8.7,0.65)(8.5,0.7)(8.45,0)\put(8,0.2){$\beta$}\put(2.57,3.88){\line(3,-2){0.7}}\put(3.2,3.45){\line(2,3){0.43}}\put(3.15,4){\circle*{0.1}}\put(3.5,4.5){A}\put(-0.3,-0.6){C}\put(9.9,0){B}\bezier{10}(3,4.48)(2.3,4.95)(2,5.15)\put(-8.2,0){\line(5,2){11.1}}\put(-9,0){M}\bezier(-6.45,0.65)(-6.1,0.6)(-5.9,0)\put(-5.5,0.2){$\delta$}\bezier(0.45,0.65)(-0.5,0.7)(-0.6,0)\put(-1.2,0.2){$\omega$}\put(1.2,3.2){$\rho$}\bezier(1.6,3.9)(1.7,3.5)(2.3,3.5)\put(6.5,7.5){\dashbox{0.1}(7.5,1.5){\text{\Large$\sf \delta + \omega + \rho = 180^{\circ}$}}}\put(6.5,4.5){\dashbox{0.1}(7.5,1.5){\text{\Large$\sf \delta = 180^{\circ} - \omega - \rho$}}}\put(8.5,6.5){\LARGE$\downdownarrows$}\put(11.5,6.5){\LARGE$\downdownarrows$}\end{picture}[/tex]
⠀
⠀⠀
⠀⠀(✋ Observe que caso tivéssemos um triângulo que além de retângulo também fosse isósceles essa propriedade não se verificaria pois a bissetriz do ângulo externo em A seria paralela à reta que contém a hipotenusa BC e nunca então a interceptaria).
⠀
⠀⠀Sendo o ângulo externo em A o ângulo suplementar de 90º, temos que ele valerá 180º - 90º = 90º e sua bissetriz valerá 90º/2 = 45º. Com isso temos que [tex]\sf \rho = 45^{\circ}[/tex], o que de I) extraímos a seguinte relação:
⠀
⠀⠀[tex]\huge\gray{\boxed{\sf\blue{~~II)~\rho = \dfrac{\gamma + \beta}{2}~~}}}[/tex]
⠀
⠀⠀Tendo constatado também que [tex]\sf \omega[/tex] é suplementar à [tex]\sf \gamma[/tex], temos então a seguinte relação:
⠀
⠀⠀[tex]\LARGE\gray{\boxed{\sf\blue{~~III)~\omega = 180^{\circ} - \gamma~~}}}[/tex]
⠀
⠀⠀Temos finalmente pela soma dos ângulos internos do triângulo AMB que:
⠀
[tex]\LARGE\blue{\text{$\sf \delta + \omega + \rho = 180^{\circ}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf \delta = 180^{\circ} - \rho - \omega$}}[/tex]
⠀
[tex]\Large\blue{\text{$\sf \delta = 180^{\circ} - \dfrac{\overbrace{\gamma + \beta}^{II)}}{2} - (\overbrace{180^{\circ} - \gamma}^{III)}) $}}[/tex]
⠀
[tex]\Large\blue{\text{$\sf \delta = \diagup\!\!\!\!{180}^{\circ} - \dfrac{\gamma + \beta}{2} - \diagup\!\!\!\!{180}^{\circ} + \gamma $}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf \delta = \dfrac{2\gamma}{2} - \dfrac{\gamma + \beta}{2}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf \delta = \dfrac{2\gamma - \gamma - \beta}{2}$}}[/tex]
⠀
[tex]\LARGE\blue{\text{$\sf \delta = \dfrac{\gamma - \beta}{2}~~~~\therefore$}}[/tex]
⠀
⠀
[tex]\huge\green{\boxed{\rm~~~\gray{\delta}~\pink{=}~\blue{ \dfrac{\gamma - \beta}{2} }~~~}}[/tex] ✅
⠀
⠀
⠀
⠀
[tex]\bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]
⠀⠀☀️ Por que a soma dos ângulos internos de qualquer triângulo é sempre igual à 180º?
⠀
✈ https://brainly.com.br/tarefa/38294313
[tex]\bf\large\red{\underline{\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad}}[/tex]✍
⠀
⠀
⠀
⠀
[tex]\bf\large\red{\underline{\quad\quad\qquad\qquad\qquad\qquad\qquad\qquad\qquad}}[/tex]☁
⠀⠀⠀⠀☕ [tex]\Large\blue{\text{\bf Bons~estudos.}}[/tex]
⠀
([tex]\orange{D\acute{u}vidas\ nos\ coment\acute{a}rios}[/tex]) ☄
[tex]\bf\large\red{\underline{\qquad \qquad \qquad \qquad \qquad \qquad \quad }}\LaTeX[/tex]✍
❄☃ [tex]\sf(\purple{+}~\red{cores}~\blue{com}~\pink{o}~\orange{App}~\green{Brainly})[/tex] ☘☀
⠀
⠀
⠀
⠀
[tex]\gray{"Absque~sudore~et~labore~nullum~opus~perfectum~est."}[/tex]
Obrigado por usar nossa plataforma. Estamos sempre aqui para fornecer respostas precisas e atualizadas para todas as suas perguntas. Esperamos que isso tenha sido útil. Por favor, volte sempre que precisar de mais informações ou respostas às suas perguntas. Obrigado por visitar Sistersinspirit.ca. Volte em breve para mais informações úteis e respostas dos nossos especialistas.