O Sistersinspirit.ca facilita a busca por soluções para perguntas cotidianas e complexas com a ajuda de nossa comunidade. Descubra soluções abrangentes para suas perguntas de profissionais experientes em nossa amigável plataforma. Explore soluções abrangentes para suas perguntas de uma ampla gama de profissionais em nossa plataforma amigável.

20. Toda dizima periódica é um número racional, pois pode
ser escrita como uma fração de numerador e denominador
Como o período da dízima periódica simples apresenta
apenas um algarismo (2), multiplicamos os dois membros
inteiros. Veja como obter a fração que gera uma dizima
Vamos obter a fração geratriz da dízima 0,222...
periódica, denominada fração geratriz.
Escrevemos a seguinte equação:
X = 0,222... (0)
de (1) por 10
10x = 2,222... (11)
Subtraímos (I) de (11)
10x = 2,222... (11)
1x = 0,222... ()
10x - X = 2,222... -0,222...
9x = 2
2
X=
9
2.
Portanto, 0,222...
9
Usando esse método, prove que 0,9999... = 1.​


Sagot :

Vamos encontrar a fração geratriz para a dízima periódica 0.99999...

Seja x este número, utilizamos a notação da barra acima do período, o número a ser repetido, assim,

[tex]x=0.999\dots = 0.\overline{9}[/tex]

Multiplicando por 10 causa

[tex]10x=9.\overline{9}[/tex]

Subtraindo um do outro,

[tex]10x-x = 9.\overline{9}-0.\overline{9}[/tex]

[tex]9x = 9 \implies x = 1[/tex]

Portanto,

[tex]0.\overline{9} = 0.9999\dots = 1[/tex]